Abstract

Quantum information processing using atomic qubits requires narrow linewidth lasers with long-term stability for high-fidelity coherent manipulation of Rydberg states. In this paper, we report on the construction and characterization of three continuous-wave narrow linewidth lasers stabilized simultaneously to an ultra-high finesse Fabry–Perot cavity made of ultra-low expansion glass, with a tunable offset-lock frequency. One laser operates at 852 nm, while the two locked lasers at 1018 nm are frequency doubled to 509 nm for excitation of Cs133 atoms to Rydberg states. The optical beat note at 509 nm is measured to be 260(5) Hz. We present measurements of the offset between the atomic and cavity resonant frequencies using electromagnetically induced transparency for high-resolution spectroscopy on a cold atom cloud. The long-term stability is determined from repeated spectra over a period of 20 days, yielding a linear frequency drift of 1  Hz/s.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Stabilizing dual laser with a tunable high-finesse transfer cavity for single-atom Rydberg excitation

Yong Zeng, Kun-Peng Wang, Yang-Yang Liu, Xiao-Dong He, Min Liu, Peng Xu, Jin Wang, and Ming-Sheng Zhan
J. Opt. Soc. Am. B 35(2) 454-459 (2018)

Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states

Elizabeth M. Bridge, Niamh C. Keegan, Alistair D. Bounds, Danielle Boddy, Daniel P. Sadler, and Matthew P. A. Jones
Opt. Express 24(3) 2281-2292 (2016)

Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell

Jieying Wang, Jiandong Bai, Jun He, and Junmin Wang
Opt. Express 25(19) 22510-22518 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2005).
  2. M. Saffman, “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,” J. Phys. B 49, 202001 (2016).
    [Crossref]
  3. J. M. Auger, S. Bergamini, and D. E. Browne, “Blueprint for fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. A 96, 052320 (2017).
    [Crossref]
  4. P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
    [Crossref]
  5. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
    [Crossref]
  6. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
    [Crossref]
  7. Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
    [Crossref]
  8. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref]
  9. K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
    [Crossref]
  10. H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
    [Crossref]
  11. T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
    [Crossref]
  12. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [Crossref]
  13. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
    [Crossref]
  14. M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
    [Crossref]
  15. J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
    [Crossref]
  16. M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
    [Crossref]
  17. A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
    [Crossref]
  18. J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
    [Crossref]
  19. H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
    [Crossref]
  20. C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
    [Crossref]
  21. J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” Annu. Rev. Cold Atoms Mol. 1, 301–350 (2013).
    [Crossref]
  22. O. Firstenberg, C. S. Adams, and S. Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” J. Phys. B 49, 152003 (2016).
    [Crossref]
  23. H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
    [Crossref]
  24. D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
    [Crossref]
  25. H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
    [Crossref]
  26. R. W. Fox, C. W. Oates, and L. W. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” Exp. Methods Phys. Sci. 40, 1–46 (2003).
    [Crossref]
  27. M. J. Martin and J. Ye, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012), Chap. 15, p. 237.
  28. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
    [Crossref]
  29. S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
    [Crossref]
  30. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
    [Crossref]
  31. G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
    [Crossref]
  32. I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
    [Crossref]
  33. C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
    [Crossref]
  34. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
    [Crossref]
  35. A. Arias, S. Helmrich, C. Schweiger, L. Ardizzone, G. Lochead, and S. Whitlock, “Versatile, high-power 460  nm laser system for Rydberg excitation of ultracold potassium,” Opt. Express 25, 14829–14839 (2017).
    [Crossref]
  36. J. de Hond, N. Cisternas, G. Lochead, and N. J. van Druten, “Medium-finesse optical cavity for the stabilization of Rydberg lasers,” Appl. Opt. 56, 5436–5443 (2017).
    [Crossref]
  37. E. M. Bridge, N. C. Keegan, A. D. Bounds, D. Boddy, D. P. Sadler, and M. P. A. Jones, “Tunable cw UV laser with <35  kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states,” Opt. Express 24, 2281–2292 (2016).
    [Crossref]
  38. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
    [Crossref]
  39. A. Hemmerich, D. H. McIntyre, C. Zimmermann, and T. W. Hänsen, “Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator,” Opt. Lett. 15, 372–374 (1990).
    [Crossref]
  40. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  41. T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [Crossref]
  42. A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
    [Crossref]
  43. I. Ricciardi, M. D. Rosa, A. Rocco, P. Ferraro, and P. D. Natale, “Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3,” Opt. Express 18, 10985–10994 (2010).
    [Crossref]
  44. R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
    [Crossref]
  45. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  46. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [Crossref]
  47. R. W. Fox, “Temperature analysis of low-expansion Fabry–Perot cavities,” Opt. Express 17, 15023–15031 (2009).
    [Crossref]
  48. L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
    [Crossref]
  49. J. I. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express 16, 15980–15990 (2008).
    [Crossref]
  50. P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
    [Crossref]
  51. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
    [Crossref]
  52. G. Rempe, R. Lalezari, R. J. Thompson, and H. J. Kimble, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–366 (1992).
    [Crossref]
  53. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
    [Crossref]
  54. M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
    [Crossref]
  55. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
    [Crossref]
  56. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
    [Crossref]
  57. R. Legaie, C. J. Picken, and J. D. Pritchard, “Data for ’sub-kHz excitation lasers for quantum information processing with Rydberg atoms’,” arXiv:1711.02645v1 (2017).

2017 (6)

J. M. Auger, S. Bergamini, and D. E. Browne, “Blueprint for fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. A 96, 052320 (2017).
[Crossref]

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

A. Arias, S. Helmrich, C. Schweiger, L. Ardizzone, G. Lochead, and S. Whitlock, “Versatile, high-power 460  nm laser system for Rydberg excitation of ultracold potassium,” Opt. Express 25, 14829–14839 (2017).
[Crossref]

J. de Hond, N. Cisternas, G. Lochead, and N. J. van Druten, “Medium-finesse optical cavity for the stabilization of Rydberg lasers,” Appl. Opt. 56, 5436–5443 (2017).
[Crossref]

2016 (8)

E. M. Bridge, N. C. Keegan, A. D. Bounds, D. Boddy, D. P. Sadler, and M. P. A. Jones, “Tunable cw UV laser with <35  kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states,” Opt. Express 24, 2281–2292 (2016).
[Crossref]

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

O. Firstenberg, C. S. Adams, and S. Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” J. Phys. B 49, 152003 (2016).
[Crossref]

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

M. Saffman, “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,” J. Phys. B 49, 202001 (2016).
[Crossref]

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

2015 (6)

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

2014 (2)

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

2013 (1)

J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” Annu. Rev. Cold Atoms Mol. 1, 301–350 (2013).
[Crossref]

2012 (1)

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

2011 (1)

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

2010 (6)

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

I. Ricciardi, M. D. Rosa, A. Rocco, P. Ferraro, and P. D. Natale, “Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3,” Opt. Express 18, 10985–10994 (2010).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

2009 (2)

R. W. Fox, “Temperature analysis of low-expansion Fabry–Perot cavities,” Opt. Express 17, 15023–15031 (2009).
[Crossref]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

2008 (3)

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

J. I. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express 16, 15980–15990 (2008).
[Crossref]

2007 (1)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]

2006 (1)

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

2005 (2)

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[Crossref]

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

2004 (1)

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

2003 (2)

H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[Crossref]

R. W. Fox, C. W. Oates, and L. W. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” Exp. Methods Phys. Sci. 40, 1–46 (2003).
[Crossref]

2002 (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

1998 (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

1997 (1)

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

1995 (1)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
[Crossref]

1992 (1)

1990 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1980 (2)

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Abel, R. P.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

Adams, C. S.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

O. Firstenberg, C. S. Adams, and S. Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” J. Phys. B 49, 152003 (2016).
[Crossref]

J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” Annu. Rev. Cold Atoms Mol. 1, 301–350 (2013).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

Alnis, J.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Ardizzone, L.

Arias, A.

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

Auger, J. M.

J. M. Auger, S. Bergamini, and D. E. Browne, “Blueprint for fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. A 96, 052320 (2017).
[Crossref]

Bachor, H.-A.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

Barredo, D.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

Bason, M. G.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

Bergamini, S.

J. M. Auger, S. Bergamini, and D. E. Browne, “Blueprint for fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. A 96, 052320 (2017).
[Crossref]

Biedermann, G. W.

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

Bienias, P.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Bloom, B. J.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Boddy, D.

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

Bounds, A. D.

Bowden, W.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Bridge, E. M.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

E. M. Bridge, N. C. Keegan, A. D. Bounds, D. Boddy, D. P. Sadler, and M. P. A. Jones, “Tunable cw UV laser with <35  kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states,” Opt. Express 24, 2281–2292 (2016).
[Crossref]

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Browaeys, A.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Browne, D. E.

J. M. Auger, S. Bergamini, and D. E. Browne, “Blueprint for fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. A 96, 052320 (2017).
[Crossref]

Büchler, H. P.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Campbell, S. L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Cano, D.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Cappellini, G.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Carr, A. W.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

Catani, J.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Chen, L.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2005).

Cisternas, N.

Cornish, S. L.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Couillaud, B.

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

Cummins, H. K.

H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[Crossref]

Curtis, E. A.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Darkwah Oppong, N.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

de Hond, J.

de Léséleuc, S.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

de Melo, N. R.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Deutsch, I. H.

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

Donnellan, S.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Dürr, S.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Evellin, C.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Falke, S.

Fallani, L.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Fan, H.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Ferraro, P.

Firstenberg, O.

O. Firstenberg, C. S. Adams, and S. Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” J. Phys. B 49, 152003 (2016).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fortágh, J.

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Fox, R. W.

R. W. Fox, “Temperature analysis of low-expansion Fabry–Perot cavities,” Opt. Express 17, 15023–15031 (2009).
[Crossref]

R. W. Fox, C. W. Oates, and L. W. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” Exp. Methods Phys. Sci. 40, 1–46 (2003).
[Crossref]

Gaëtan, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Gauguet, A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
[Crossref]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

Gill, P.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Goban, A.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

Gorniaczyk, H.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Grangier, P.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Grebing, C.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
[Crossref]

Gregory, P. D.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

Grimmel, J.

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

Häfner, S.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Hagemann, C.

Hall, J. L.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hankin, A. M.

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

Hansch, T.

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Hänsch, T.

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

Hänsch, T. W.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Hänsen, T. W.

Hattermann, H.

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Helmrich, S.

Hemmerich, A.

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

Hill, I. R.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Hobson, R.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Höckh, S.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Hofferberth, S.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

O. Firstenberg, C. S. Adams, and S. Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” J. Phys. B 49, 152003 (2016).
[Crossref]

Hollberg, L. W.

R. W. Fox, C. W. Oates, and L. W. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” Exp. Methods Phys. Sci. 40, 1–46 (2003).
[Crossref]

Hommelhoff, P.

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

Hutson, R. B.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

Isenhower, L.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]

Jau, Y.-Y.

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

Jessen, F.

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Ji, Z.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
[Crossref]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

Jones, J. A.

H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[Crossref]

Jones, M. P. A.

E. M. Bridge, N. C. Keegan, A. D. Bounds, D. Boddy, D. P. Sadler, and M. P. A. Jones, “Tunable cw UV laser with <35  kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states,” Opt. Express 24, 2281–2292 (2016).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Karimkashi, S.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Karlewski, F.

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Keating, T.

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

Keegan, N. C.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Kolachevsky, N.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Kondo, J. M.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Köppinger, M. P.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kübler, H.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Kumar, A.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Kumar, S.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Labuhn, H.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

Lahaye, T.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

Lalezari, R.

Lam, P. K.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

Legaie, R.

R. Legaie, C. J. Picken, and J. D. Pritchard, “Data for ’sub-kHz excitation lasers for quantum information processing with Rydberg atoms’,” arXiv:1711.02645v1 (2017).

Legero, T.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
[Crossref]

Lemonde, P.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Lesanovsky, I.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Li, T.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

Li, W.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Li, Y.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
[Crossref]

Lichtman, M. T.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

Lisdat, C.

Livas, J.

Llewellyn, G.

H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[Crossref]

Lochead, G.

Lombardi, P.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Löw, R.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Lu, B.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Mack, M.

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Macr, T.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

Maller, K. M.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

Mancini, M.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Marchant, A. L.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Marte, M. A. M.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

Marti, G. E.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

Martin, M. J.

Matei, D. G.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Matveev, A.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Maxwell, D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

McClelland, D. E.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

McIntyre, D. H.

McNally, R. L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

Mirgorodskiy, I.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Miroshnychenko, Y.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Mohapatra, A. K.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]

Mølmer, K.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

Molony, P. K.

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Natale, P. D.

Nicholson, T. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2005).

Numata, K.

Oates, C. W.

R. W. Fox, C. W. Oates, and L. W. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” Exp. Methods Phys. Sci. 40, 1–46 (2003).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Pagano, G.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Paris-Mandoki, A.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

Pfau, T.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Picken, C. J.

R. Legaie, C. J. Picken, and J. D. Pritchard, “Data for ’sub-kHz excitation lasers for quantum information processing with Rydberg atoms’,” arXiv:1711.02645v1 (2017).

Piotrowicz, M. J.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

Pizzocaro, M.

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Pritchard, J. D.

J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” Annu. Rev. Cold Atoms Mol. 1, 301–350 (2013).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

R. Legaie, C. J. Picken, and J. D. Pritchard, “Data for ’sub-kHz excitation lasers for quantum information processing with Rydberg atoms’,” arXiv:1711.02645v1 (2017).

Raitzsch, U.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

Ravets, S.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

Reichel, J.

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

Reinschmidt, M.

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

Rempe, G.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

G. Rempe, R. Lalezari, R. J. Thompson, and H. J. Kimble, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–366 (1992).
[Crossref]

Ricciardi, I.

Riehle, F.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
[Crossref]

Robinson, J. M.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Rocco, A.

Rosa, M. D.

Sadler, D. P.

Saffman, M.

M. Saffman, “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,” J. Phys. B 49, 202001 (2016).
[Crossref]

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[Crossref]

Sándor, N.

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

Sárkány, L. M. H.

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

Schiller, S.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

Schmidt, S.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Schweiger, C.

Schwettmann, A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Sedlacek, J.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Sedlacek, J. A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Shaffer, J. P.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Šibalic, N.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

Sonderhouse, L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Spreeuw, R. J. C.

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

Steinmetz, T.

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

Sterr, U.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
[Crossref]

Sun, Y.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

Targat, R. L.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Taubman, M. S.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

Tauschinsky, A.

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

Thijssen, R. M. T.

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

Thompson, R. J.

Thorpe, J. I.

Tiarks, D.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Tresp, C.

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Treutlein, P.

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

Udem, T.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

van Druten, N. J.

van Linden van den Heuvell, H. B.

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

Wade, C. G.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Walker, T. G.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Weatherill, K. J.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” Annu. Rev. Cold Atoms Mol. 1, 301–350 (2013).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

Weyrich, R.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

White, A. G.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

Whitlock, S.

A. Arias, S. Helmrich, C. Schweiger, L. Ardizzone, G. Lochead, and S. Whitlock, “Versatile, high-power 460  nm laser system for Rydberg excitation of ultracold potassium,” Opt. Express 25, 14829–14839 (2017).
[Crossref]

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

Wilk, T.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

Wolters, J.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

Xia, T.

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

Xiao, M.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
[Crossref]

Yang, T.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

Yavuz, D. D.

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

Ye, J.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 1019/s,” Opt. Lett. 39, 5102–5105 (2014).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

M. J. Martin and J. Ye, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012), Chap. 15, p. 237.

Zang, E.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

Zhang, W.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

Zimmermann, C.

Zondy, J.-J.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Annu. Rev. Cold Atoms Mol. (1)

J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” Annu. Rev. Cold Atoms Mol. 1, 301–350 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[Crossref]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Exp. Methods Phys. Sci. (1)

R. W. Fox, C. W. Oates, and L. W. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” Exp. Methods Phys. Sci. 40, 1–46 (2003).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Phys. B (4)

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

O. Firstenberg, C. S. Adams, and S. Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” J. Phys. B 49, 152003 (2016).
[Crossref]

M. Saffman, “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,” J. Phys. B 49, 202001 (2016).
[Crossref]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[Crossref]

J. Phys. Conf. Ser. (1)

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” J. Phys. Conf. Ser. 723, 012019 (2016).
[Crossref]

Nat. Commun. (1)

H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, “Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances,” Nat. Commun. 7, 12480 (2016).
[Crossref]

Nat. Photonics (1)

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Nat. Phys. (2)

Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, “Entangling atomic spins with a Rydberg-dressed spin-flip blockade,” Nat. Phys. 12, 71–74 (2016).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Nature (2)

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macr, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

New J. Phys. (2)

J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt, N. Sándor, and J. Fortágh, “Measurement and numerical calculation of Rubidium Rydberg Stark spectra,” New J. Phys. 17, 053005 (2015).
[Crossref]

P. D. Gregory, P. K. Molony, M. P. Köppinger, A. Kumar, Z. Ji, B. Lu, A. L. Marchant, and S. L. Cornish, “A simple, versatile laser system for the creation of ultracold ground state molecules,” New J. Phys. 17, 055006 (2015).
[Crossref]

Opt. Commun. (2)

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (11)

H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003).
[Crossref]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry–Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[Crossref]

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[Crossref]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiments,” Phys. Rev. A 51, 576–584 (1995).
[Crossref]

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

M. Mack, J. Grimmel, F. Karlewski, L. M. H. Sárkány, H. Hattermann, and J. Fortágh, “All-optical measurement of Rydberg-state lifetimes,” Phys. Rev. A 92, 012517 (2015).
[Crossref]

A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip,” Phys. Rev. A 81, 063411 (2010).
[Crossref]

K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits,” Phys. Rev. A 92, 022336 (2015).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

J. M. Auger, S. Bergamini, and D. E. Browne, “Blueprint for fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. A 96, 052320 (2017).
[Crossref]

Phys. Rev. Lett. (7)

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. Hänsch, and J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100, 113003 (2008).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  μm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Rev. Mod. Phys. (1)

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, and J. Catani, “A compact ultranarrow high-power laser system for experiments with 578  nm ytterbium clock transition,” Rev. Sci. Instrum. 86, 073111 (2015).
[Crossref]

Sci. Adv. (1)

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Science (1)

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90–94 (2017).
[Crossref]

Other (3)

M. J. Martin and J. Ye, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012), Chap. 15, p. 237.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2005).

R. Legaie, C. J. Picken, and J. D. Pritchard, “Data for ’sub-kHz excitation lasers for quantum information processing with Rydberg atoms’,” arXiv:1711.02645v1 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the two-photon excitation of Cs133 to nS1/2 or nD3/2,5/2 Rydberg state via 6P3/2 state. (b) Laser setup for Qubit A at 852 nm driving transition from 6S1/26P3/2. (c) Locking electronics for frequency-doubled Rydberg lasers A and B driving the second stage transition at 509 nm. Key: PBS, polarizing beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; FPD, fast photodiode; DBM, double balanced mixer; S, splitter; PI, proportional integral; TA, tapered amplifier; AOM, acousto-optic modulator; EOM, electro-optic modulator.
Fig. 2.
Fig. 2. Cavity locking setup used to lock two Rydberg lasers A and B (1018 nm) and the Qubit A laser (852 nm) to an ULE reference optical cavity with a fast Pound–Drever–Hall lock. Key: L, cavity mode-matching lens; DM, dichroic mirror; PBS, polarizing beam splitter; QWP, quarter-wave plate; R, high-bandwidth photodiode; T, high-gain photodiode.
Fig. 3.
Fig. 3. (a) Determination of the zero-expansion temperature Tc=36.1±0.1°C with a parabolic fit. Operating at Tc gives a second-order frequency sensitivity to temperature change. (b) Free spectral range determination via the beat note between Qubit A and a laser stabilized to the F=4 to F=5 transition.
Fig. 4.
Fig. 4. (a) In-loop error signal for Rydberg B plotted relative to the PDH frequency with 5 kHz resolution bandwidth (RBW) showing servo bandwidth of 1.1 MHz. (b) Optical beat note relative to νc=440  MHz recorded at 509 nm between Rydberg A and B locked to consecutive TEM00 and TEM01 modes with 10 kHz RBW. (c) Linearized power spectrum recorded with 10 Hz RBW showing Lorentzian linewidth FWHM=260(5)  Hz. Data represent 100 rms averages using 190 ms sweep time.
Fig. 5.
Fig. 5. (a) Schematic of the experimental EIT setup. A strong coupling beam (green) counter-propagates with a weak probe beam (red) through a cold atom cloud of Cs atoms optically pumped in the |F=4,mF=4 dark state. (b) EIT transmission peak for 50S1/2 Rydberg state with a coupling power of 50 mW with fitted χν2=1.0. Error bars represent one standard deviation. (c) Coupling laser detuning Δc/2π as a function of the coupling laser offset frequency, fitted according to the formula Δc/2π=α(νOffsetν0), showing the two-photon resonance at ν0=120.82(4)  MHz.
Fig. 6.
Fig. 6. EIT resonance’s frequency of 50S1/2 Rydberg state recorded for a period of 20 days. Using a linear fit, the constant cavity’s drift is evaluated at 1 Hz/s. Inset shows normalized residuals. Error bars reflect standard errors.

Metrics