Abstract

The Knill-Laflamme-Milburn (KLM) entangled state, proposed by Knill et al. in Nature 409, 46 (2001) [CrossRef]  , has unique advantages for linear optics quantum information processing tasks, because it is able to decrease the error rate. In this paper, we propose scalable schemes to generate the multi-qubit KLM entangled states with single-photon resources and weak cross-Kerr nonlinearity theoretically. We first construct the two-qubit KLM state, through which the three- and other n-qubit KLM states are generated. For the schemes using weak cross-Kerr nonlinearity, P homodyne measurement has a higher success rate than X homodyne measurement but with narrow applications since |αeiθ and |αeiθ are distinguished from each other, which is undesirable for most of the entanglement generation schemes. To avoid this disadvantage, Jin et al. [Phys. Rev. A 75, 054302 (2007) [CrossRef]  ] introduced the coherent state superposition (CSS), c(|α+|α), to generate a Greenberger-Horne-Zeilinger state but with a rapid oscillation term, which needs to be ignored. Through designing the optical path uniquely and choosing the phase of cross-Kerr nonlinearity suitably, our P homodyne measurement and CSS probe mode-based schemes to generate the KLM state avoid the needless term. The present scalable schemes have high total success probabilities, high fidelities even in consideration of decoherence, and may find potential applications in the future with the further development of nonlinear optics.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon
J. Opt. Soc. Am. B 29(7) 1584-1588 (2012)

Measurement-induced nonclassical states from a coherent state heralded by Knill–Laflamme–Milburn-type interference

Xue-xiang Xu, Hong-chun Yuan, and Shan-jun Ma
J. Opt. Soc. Am. B 33(6) 1322-1329 (2016)

Engineering steady Knill-Laflamme-Milburn state of Rydberg atoms by dissipation

Dong-Xiao Li, Xiao-Qiang Shao, Jin-Hui Wu, X. X. Yi, and Tai-Yu Zheng
Opt. Express 26(3) 2292-2302 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription