Abstract

Planar photonic nanostructures have recently attracted a great deal of attention for quantum optics applications. In this paper, we carry out full 3D numerical simulations to fully account for all radiation channels and thereby quantify the coupling efficiency of a quantum emitter embedded in a photonic-crystal waveguide. We determine the leakage from the quantum emitter to the surrounding environment and study its spectral and spatial dependence. The spatial maps of the coupling efficiency, the β factor, reveal that even for moderately slow light, a near-unity β factor is achievable and is remarkably robust to the position of the emitter in the waveguide.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides

Alisa Javadi, Sebastian Maibom, Luca Sapienza, Henri Thyrrestrup, Pedro D. García, and Peter Lodahl
Opt. Express 22(25) 30992-31001 (2014)

Engineering chiral light–matter interaction in photonic crystal waveguides with slow light

Sahand Mahmoodian, Kasper Prindal-Nielsen, Immo Söllner, Søren Stobbe, and Peter Lodahl
Opt. Mater. Express 7(1) 43-51 (2017)

Quasinormal mode theory and design of on-chip single photon emitters in photonic crystal coupled-cavity waveguides

T. Malhotra, R.-C. Ge, M. Kamandar Dezfouli, A. Badolato, N. Vamivakas, and S. Hughes
Opt. Express 24(12) 13574-13583 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [Crossref]
  2. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861–871 (1975).
    [Crossref]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  4. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
    [Crossref]
  5. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
    [Crossref]
  6. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref]
  8. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
    [Crossref]
  9. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [Crossref]
  10. Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011).
    [Crossref]
  11. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  12. V. Paulisch, H. Kimble, and A. González-Tudela, “Universal quantum computation in waveguide QED using decoherence free subspaces,” New J. Phys. 18, 043041 (2016).
    [Crossref]
  13. I. M. Mirza and J. C. Schotland, “Two-photon entanglement in multiqubit bidirectional-waveguide QED,” Phys. Rev. A 94, 012309 (2016).
    [Crossref]
  14. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
    [Crossref]
  15. A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
    [Crossref]
  16. D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
    [Crossref]
  17. S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
    [Crossref]
  18. M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
    [Crossref]
  19. M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38(2), 144–148 (2013).
    [Crossref]
  20. A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
    [Crossref]
  21. T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref]
  22. A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
    [Crossref]
  23. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission rates of dipoles in photonic crystal membranes,” J. Opt. Soc. Am. B 23, 1196–1206 (2006).
    [Crossref]
  24. V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
    [Crossref]
  25. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β Factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007).
    [Crossref]
  26. S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
    [Crossref]
  27. T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
    [Crossref]
  28. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
    [Crossref]
  29. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  31. S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  32. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
    [Crossref]
  33. A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376–11392 (2008).
    [Crossref]
  34. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [Crossref]
  35. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
    [Crossref]
  36. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
    [Crossref]
  37. S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
    [Crossref]
  38. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).
  39. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [Crossref]
  40. J. R. de Lasson, T. Christensen, J. Mørk, and N. Gregersen, “Modeling of cavities using the analytic modal method and an open geometry formalism,” J. Opt. Soc. Am. A 29, 1237–1246 (2012).
    [Crossref]
  41. Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
    [Crossref]
  42. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
    [Crossref]
  43. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
    [Crossref]
  44. N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
    [Crossref]
  45. P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
    [Crossref]
  46. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
    [Crossref]
  47. J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
    [Crossref]
  48. E. Munro, L. C. Kwek, and D. E. Chang, “Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide,” New J. Phys. 19, 083018 (2017).
    [Crossref]
  49. G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
    [Crossref]
  50. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
    [Crossref]
  51. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
    [Crossref]
  52. N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
    [Crossref]
  53. P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
    [Crossref]
  54. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
    [Crossref]
  55. A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
    [Crossref]
  56. S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-light-matter interaction in waveguides,” Phys. Rev. Lett. 117, 240501 (2016).
    [Crossref]
  57. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [Crossref]
  58. D. Witthaut, M. D. Lukin, and A. S. Sørensen, “Photon sorters and QND detectors using single photon emitters,” Europhys. Lett. 97, 50007 (2012).
    [Crossref]

2017 (2)

E. Munro, L. C. Kwek, and D. E. Chang, “Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide,” New J. Phys. 19, 083018 (2017).
[Crossref]

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

2016 (5)

S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-light-matter interaction in waveguides,” Phys. Rev. Lett. 117, 240501 (2016).
[Crossref]

G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
[Crossref]

V. Paulisch, H. Kimble, and A. González-Tudela, “Universal quantum computation in waveguide QED using decoherence free subspaces,” New J. Phys. 18, 043041 (2016).
[Crossref]

I. M. Mirza and J. C. Schotland, “Two-photon entanglement in multiqubit bidirectional-waveguide QED,” Phys. Rev. A 94, 012309 (2016).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

2015 (4)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

2014 (5)

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
[Crossref]

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

2013 (3)

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38(2), 144–148 (2013).
[Crossref]

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
[Crossref]

2012 (5)

J. R. de Lasson, T. Christensen, J. Mørk, and N. Gregersen, “Modeling of cavities using the analytic modal method and an open geometry formalism,” J. Opt. Soc. Am. A 29, 1237–1246 (2012).
[Crossref]

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

D. Witthaut, M. D. Lukin, and A. S. Sørensen, “Photon sorters and QND detectors using single photon emitters,” Europhys. Lett. 97, 50007 (2012).
[Crossref]

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

2011 (4)

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011).
[Crossref]

D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
[Crossref]

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
[Crossref]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

2010 (3)

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

2009 (1)

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[Crossref]

2008 (3)

A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376–11392 (2008).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

2007 (6)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β Factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007).
[Crossref]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

2006 (1)

2005 (3)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

2004 (2)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
[Crossref]

2001 (1)

2000 (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1994 (2)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
[Crossref]

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]

1991 (1)

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

1975 (1)

V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861–871 (1975).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Amann, M.-C.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Anderson, D.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Andreani, L. C.

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Arcari, M.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Atikian, H. A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Avniel, Y.

Balet, L.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Beetz, J.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Bennett, A. J.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
[Crossref]

Bhaskar, M. K.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Bichler, M.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Bielejec, E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Borregaard, J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Bracker, A. S.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Burek, M. J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Bykov, V. P.

V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861–871 (1975).
[Crossref]

Calajó, G.

G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
[Crossref]

Camacho, R. M.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Carter, S. G.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Chang, D.

G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
[Crossref]

Chang, D. E.

E. Munro, L. C. Kwek, and D. E. Chang, “Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide,” New J. Phys. 19, 083018 (2017).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Chauvin, N.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Chen, Y.

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

Chew, W. C.

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]

Choi, K. S.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Christensen, T.

Ciccarello, F.

G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
[Crossref]

Clarke, E.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

Coles, R.

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

Coles, R. J.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

de Lasson, J. R.

de Leon, N.

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Dewhurst, S. J.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Dixon, J. E.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Douglas, J. S.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Economou, S. E.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Ellis, D. J. P.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Evans, R. E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Fallahi, P.

D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
[Crossref]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

Faraon, A.

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38(2), 144–148 (2013).
[Crossref]

Farrer, I.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Finley, J. J.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Fiore, A.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Forchel, A.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Fox, A.

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

Fox, A. M.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Frédérick, S.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Froufe-Pérez, L. S.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Gammon, D.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Garca, P.

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

Garca, P. D.

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

García, P. D.

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
[Crossref]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gerace, D.

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Goban, A.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

González-Tudela, A.

V. Paulisch, H. Kimble, and A. González-Tudela, “Universal quantum computation in waveguide QED using decoherence free subspaces,” New J. Phys. 18, 043041 (2016).
[Crossref]

Gorshkov, A.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Granados, D.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Gregersen, N.

J. R. de Lasson, T. Christensen, J. Mørk, and N. Gregersen, “Modeling of cavities using the analytic modal method and an open geometry formalism,” J. Opt. Soc. Am. A 29, 1237–1246 (2012).
[Crossref]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

Günthner, T.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Habibian, H.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Hansen, S. L.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

Hauke, N.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Hoang, T. B.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Höfling, S.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Holleitner, A.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Hood, J. D.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Hughes, S.

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Hugonin, J. P.

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[Crossref]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β Factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007).
[Crossref]

Hugues, M.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Hung, C.-L.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Ilic, B.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[Crossref]

Imamoglu, A.

D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
[Crossref]

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Javadi, A.

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
[Crossref]

Jelezko, F.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

John, S.

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[Crossref]

Johnson, S. G.

A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376–11392 (2008).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Jones, G. A. C.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Kafesaki, M.

Kamp, M.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Kaniber, M.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Kim, C. S.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Kim, M.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Kimble, H.

V. Paulisch, H. Kimble, and A. González-Tudela, “Universal quantum computation in waveguide QED using decoherence free subspaces,” New J. Phys. 18, 043041 (2016).
[Crossref]

Kimble, H. J.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

Kiršanske, G.

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

Koenderink, A. F.

Kwek, L. C.

E. Munro, L. C. Kwek, and D. E. Chang, “Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide,” New J. Phys. 19, 083018 (2017).
[Crossref]

Lalanne, P.

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[Crossref]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β Factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007).
[Crossref]

Laucht, A.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Lecamp, G.

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β Factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007).
[Crossref]

Lee, E.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Lee, J. H.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lehmann, T. B.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

Lermer, M.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Liu, L.

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lodahl, P.

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-light-matter interaction in waveguides,” Phys. Rev. Lett. 117, 240501 (2016).
[Crossref]

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
[Crossref]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Loncar, M.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38(2), 144–148 (2013).
[Crossref]

Lukin, M.

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lukin, M. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

D. Witthaut, M. D. Lukin, and A. S. Sørensen, “Photon sorters and QND detectors using single photon emitters,” Europhys. Lett. 97, 50007 (2012).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Luxmoore, I.

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

Luxmoore, I. J.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Mahmoodian, S.

S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-light-matter interaction in waveguides,” Phys. Rev. Lett. 117, 240501 (2016).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Maibom, S.

Makhonin, M. N.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

Mann, N.

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

Martin, M. J.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Mazoyer, S.

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[Crossref]

McClung, A. C.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Meuwly, C.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Midolo, L.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Miguel-Sanchez, J.

D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
[Crossref]

Mirza, I. M.

I. M. Mirza and J. C. Schotland, “Two-photon entanglement in multiqubit bidirectional-waveguide QED,” Phys. Rev. A 94, 012309 (2016).
[Crossref]

Mørk, J.

J. R. de Lasson, T. Christensen, J. Mørk, and N. Gregersen, “Modeling of cavities using the analytic modal method and an open geometry formalism,” J. Opt. Soc. Am. A 29, 1237–1246 (2012).
[Crossref]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Muniz, J. A.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Munro, E.

E. Munro, L. C. Kwek, and D. E. Chang, “Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide,” New J. Phys. 19, 083018 (2017).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Nguyen, C. T.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Nielsen, T. R.

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

Nikolaev, I. S.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

Oskooi, A. F.

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Pacheco, J. L.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Painter, O.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Park, H.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Patel, R. B.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Paulisch, V.

V. Paulisch, H. Kimble, and A. González-Tudela, “Universal quantum computation in waveguide QED using decoherence free subspaces,” New J. Phys. 18, 043041 (2016).
[Crossref]

Pinotsi, D.

D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
[Crossref]

Pregnolato, T.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[Crossref]

Pütz, S.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Rabl, P.

G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
[Crossref]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Reinecke, T. L.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Ritchie, D. A.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Rix, K. R.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

Royall, B.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Saive, R.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Sandoghdar, V.

Sapienza, L.

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
[Crossref]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

Savona, V.

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
[Crossref]

Schotland, J. C.

I. M. Mirza and J. C. Schotland, “Two-photon entanglement in multiqubit bidirectional-waveguide QED,” Phys. Rev. A 94, 012309 (2016).
[Crossref]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Shields, A. J.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

Sipahigil, A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Skacel, M.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

Skolnick, M.

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

Skolnick, M. S.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Smolka, S.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

Solenov, D.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Söllner, I.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Song, J.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Sørensen, A. S.

S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-light-matter interaction in waveguides,” Phys. Rev. Lett. 117, 240501 (2016).
[Crossref]

D. Witthaut, M. D. Lukin, and A. S. Sørensen, “Photon sorters and QND detectors using single photon emitters,” Europhys. Lett. 97, 50007 (2012).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Soukoulis, C. M.

Stobbe, S.

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Sukachev, D. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

Sünner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Sweeney, T. M.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Thompson, J.

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Thyrrestrup, H.

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22, 30992–31001 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
[Crossref]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

Tiecke, T.

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Topolancik, J.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[Crossref]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Vanmaekelbergh, D.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

Vollmer, F.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[Crossref]

Vos, W. L.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Vuletic, V.

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Wang, J.

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[Crossref]

Wang, Q.

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011).
[Crossref]

Wasley, N. A.

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

Weedon, W. H.

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Witthaut, D.

D. Witthaut, M. D. Lukin, and A. S. Sørensen, “Photon sorters and QND detectors using single photon emitters,” Europhys. Lett. 97, 50007 (2012).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Yang, L.

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Yu, S.-P.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Zhang, L.

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Appl. Phys. Lett. (4)

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[Crossref]

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100, 061122 (2012).
[Crossref]

N. A. Wasley, I. Luxmoore, R. Coles, E. Clarke, A. Fox, and M. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[Crossref]

P. D. Garca, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102, 031101 (2013).
[Crossref]

Europhys. Lett. (1)

D. Witthaut, M. D. Lukin, and A. S. Sørensen, “Photon sorters and QND detectors using single photon emitters,” Europhys. Lett. 97, 50007 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Pinotsi, P. Fallahi, J. Miguel-Sanchez, and A. Imamoglu, “Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures,” IEEE J. Quantum Electron. 47, 1371–1374 (2011).
[Crossref]

J. Comp. Phys. (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]

MRS Bull. (1)

M. Lončar and A. Faraon, “Quantum photonic networks in diamond,” MRS Bull. 38(2), 144–148 (2013).
[Crossref]

Nano Lett. (1)

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref]

Nat. Commun. (2)

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kiršanskė, T. Pregnolato, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref]

Nat. Photonics (2)

S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, “Quantum control of a spin qubit coupled to a photonic crystal cavity,” Nat. Photonics 7, 329–334 (2013).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Nat. Phys. (1)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Nature (4)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

T. Tiecke, J. Thompson, N. de Leon, L. Liu, V. Vuletić, and M. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

New J. Phys. (3)

V. Paulisch, H. Kimble, and A. González-Tudela, “Universal quantum computation in waveguide QED using decoherence free subspaces,” New J. Phys. 18, 043041 (2016).
[Crossref]

E. Munro, L. C. Kwek, and D. E. Chang, “Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide,” New J. Phys. 19, 083018 (2017).
[Crossref]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[Crossref]

Phys. Rev. A (3)

I. M. Mirza and J. C. Schotland, “Two-photon entanglement in multiqubit bidirectional-waveguide QED,” Phys. Rev. A 94, 012309 (2016).
[Crossref]

N. Mann, A. Javadi, P. Garca, P. Lodahl, and S. Hughes, “Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides,” Phys. Rev. A 92, 023849 (2015).
[Crossref]

G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in slow-light waveguide qed,” Phys. Rev. A 93, 033833 (2016).
[Crossref]

Phys. Rev. B (6)

P. D. Garca, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96, 144201 (2017).
[Crossref]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010).
[Crossref]

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
[Crossref]

Phys. Rev. Lett. (12)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β Factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref]

S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-light-matter interaction in waveguides,” Phys. Rev. Lett. 117, 240501 (2016).
[Crossref]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[Crossref]

Phys. Rev. X (1)

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2, 011014 (2012).
[Crossref]

Rev. Mod. Phys. (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347–400 (2015).
[Crossref]

Science (3)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354, 847–850 (2016).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garca, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson localized modes,” Science 327, 1352–1355 (2010).
[Crossref]

Sov. J. Quantum Electron. (1)

V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861–871 (1975).
[Crossref]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Band diagram of a PCW in a membrane for TE modes. The solid black lines are the guided modes of the waveguide. The gray regions mark the membrane guided modes. The blue region is the continuum of the radiation modes that are not bound to the membrane. The red circle and square mark the frequencies corresponding to ng=5 and ng=58, respectively. (b) Sketch of a quantum emitter in the middle of a PCW, showing the coupling to radiation continuum (γrad) and to the guided mode (γwg).
Fig. 2.
Fig. 2. A cut through the simulation domain. The blue box is the PML layer around the air domain. The green box is the integration surface that captures the radiation modes, and the red plane is where the Dirichlet boundary conditions are applied.
Fig. 3.
Fig. 3. Spatial map of the waveguide Purcell factor, Fpwg, for x- and y-dipole orientations (upper and lower row, respectively) and for modes with different group indices: (a) and (b) ng=5; (c) and (d) ng=20; (e) and (f) ng=58; and (g) and (h) ng=120. The white circles represent the air holes. The light–matter interaction is enhanced as the light propagation slows down, and hence the maximum value of Fpwg increases. The spatial dependence of Fpwg follows the Bloch mode of the PCW.
Fig. 4.
Fig. 4. Spatial map of the magnitude of the electric field generated by a y-dipole placed in the antinode of Ey for (a) ng=5 and (b) ng=58. The blue arrow shows the dipole and its orientation. The color scale is saturated at the point of the dipole.
Fig. 5.
Fig. 5. Map of the coupling to the radiation modes as quantified by Fprad for x- and y-dipole orientations: (a) and (b) at ng=5; (c) and (d) at ng=20; (e) and (f) at ng=58; and (g) and (h) at ng=120. We find Fprad0.13 for all positions and a minimum value of Fprad=0.005.
Fig. 6.
Fig. 6. Map of the β factor for x- and y-oriented dipoles: (a) and (b) at ng=5; (c) and (d) at ng=20; (e) and (f) at ng=58; and (g) and (h) at ng=120. The green and blue contours correspond to β=0.8 and β=0.96, respectively. Note that the highly nonlinear scale bar (i.e., β) is close to unity in very large spatial ranges.
Fig. 7.
Fig. 7. Dependence of γbox on the size of the integration box. For lb/a>25 and hb/2dz>4, γbox fluctuates by less than 5%. (b) Dependence of γbox on the actual size of the simulation domain. Both (a) and (b) are calculated for y-oriented dipoles in the anti-node of the Ey field. The frequency of the dipole corresponds to ng=58.
Fig. 8.
Fig. 8. (a) and (b) Spatial dependence of Fprad for x- and y-oriented dipoles inside the bandgap of a photonic crystal membrane. The maximum of Fprad is 1/10 and its minimum value is 1/168. The frequency of the emitter corresponds to the vertical green line in (c). (c) Frequency dependence of Fprad for the two dipole positions and orientations shown in (a) and (b).

Tables (1)

Tables Icon

Table 1. Parameter List

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ=πωε0|d|2ρ(ω0,r0,nd),
ρ(ω0,r0,nd)=k|nd·uk*(r0)|2δ(ω0ωk),
Fpwg=γwgγ0=6π2c3ε0|Epg·nd*|2ω2unitcelld3rnRe[Epg×Hpg*]/a,
E|x±=|A0r(l)|eiϕ(r0)Epg(*)(x±)e±ikx±,
|A0r|=|A0l|=FpwgP01/aunitcelld3rRe[Epg*×Hpg],ϕ=arg(iEpg(r0)·d).

Metrics