Abstract

We report on the development of high-average-power nanosecond and picosecond laser sources tunable near 2 μm based on optical parametric oscillators (OPOs) pumped by solid-state Nd:YAG and Yb-fiber lasers at 1.064 μm. By exploiting 50-mm-long MgO-doped lithium niobate (MgO:PPLN) as the nonlinear crystal and operating the OPO in a near-degenerate doubly resonant configuration with intracavity wavelength selection elements, we have generated tunable high-average-power radiation across 1880–2451 nm in high spectral and spatial beam quality with excellent output stability. In nanosecond operation, pumping with a Q-switched Nd:YAG laser and using an intracavity prism for spectral control, we have generated more than 2 W of average power in pulses of 10 ns duration at 80 kHz repetition rate with narrow linewidth (<3  nm), with M2<2.8, and a passive power stability better than 2.2% rms over 1 h. In picosecond operation, pumping with a mode-locked Yb-fiber laser and using a diffraction grating as the wavelength selection element, we have generated more than 5 W of average power in pulses of 20 ps at 80 MHz repetition rate with narrow bandwidth (2.5  nm), with M2<1.8 and a passive power stability better than 1.3% rms over 2 h. The demonstrated sources represent viable alternatives to Tm3+/Ho3+-doped solid-state and fiber lasers for the generation of high-power radiation in the 2  μm spectral range.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directly phase-modulation-mode-locked doubly-resonant optical parametric oscillator

Kavita Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh
Opt. Express 21(20) 23365-23375 (2013)

Fiber-laser-based, high-repetition-rate, picosecond ultraviolet source tunable across 329–348  nm

Kavita Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh
Opt. Lett. 41(20) 4799-4802 (2016)

Synchronously pumped optical parametric oscillators using all-solid-state pump lasers

G. J. Hall, M. Ebrahimzadeh, A. Robertson, G. P. A. Malcolm, and A. I. Ferguson
J. Opt. Soc. Am. B 10(11) 2168-2179 (1993)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
    [Crossref]
  2. J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37, 4005–4007 (2012).
    [Crossref]
  3. J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38, 3690–3692 (2013).
    [Crossref]
  4. J. L. Machol, R. M. Hardesty, B. J. Rye, and C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 321–324.
  5. S. Cha, K. P. Chan, and D. K. Killinger, “Tunable 2.1-μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
    [Crossref]
  6. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Hauffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho: YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [Crossref]
  7. S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai, “Coherent 2  μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device,” Appl. Opt. 49, 1809–1817 (2010).
    [Crossref]
  8. D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2  μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5, 82–87 (2017).
    [Crossref]
  9. F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm: fiber laser using volume Bragg gratings,” Opt. Lett. 35, 2388–2390 (2010).
    [Crossref]
  10. M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
    [Crossref]
  11. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm: CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
    [Crossref]
  12. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2  μm source,” Opt. Lett. 31, 1878–1880 (2006).
    [Crossref]
  13. D. Yan, Y. Wang, D. Xu, W. Shi, K. Zhong, P. Liu, C. Yan, J. Mei, J. Shi, and J. Yao, “High power, widely tunable dual-wavelength 2  μm laser based on intracavity KTP optical parametric oscillator,” J. Phys. D 50, 035104 (2017).
    [Crossref]
  14. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18, 818–822 (2001).
    [Crossref]
  15. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, and M. M. Fejer, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
    [Crossref]
  16. S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
    [Crossref]
  17. K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4-14  μm GaAs optical parametric oscillator pumped at 3  μm,” Opt. Express 22, 4131–4136 (2014).
    [Crossref]
  18. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
    [Crossref]
  19. H. Huang, H. Wang, and D. Shen, “VBG-locked continuous-wave and passively Q-switched Tm:Y2O3 ceramic laser at 2.1  μm,” Opt. Mater. Express 7, 3147–3154 (2017).
    [Crossref]
  20. A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
    [Crossref]
  21. J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
    [Crossref]
  22. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “52  mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO: LiNbO3 device,” Opt. Lett. 31, 3149–3151 (2006).
    [Crossref]
  23. S. Chaitanya Kumar and M. Ebrahim-Zadeh, “Yb-fiber-based, high-average-power, high-repetition-rate, picosecond source at 2.1  μm,” Laser Photon. Rev. 10, 970–977 (2016).
    [Crossref]
  24. P. Schlup, I. T. McKinnie, and S. D. Butterworth, “Single-mode, singly resonant, pulsed periodically poled lithium niobate optical parametric oscillator,” Appl. Opt. 38, 7398–7401 (1999).
    [Crossref]
  25. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
    [Crossref]
  26. M. Ebrahim-Zadeh and M. H. Dunn, “Optical parametric oscillators,” in Handbook of Optics, 2nd ed., Vol. IV (McGraw-Hill, 2000), pp. 1–72.
  27. C. Laporte, J. Dherbecourt, J. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Analysis of cavity-length detuning in diffraction-grating narrowed picosecond optical parametric oscillators,” J. Opt. Soc. Am. B 31, 1026–1034 (2014).
    [Crossref]

2017 (3)

2016 (2)

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “Yb-fiber-based, high-average-power, high-repetition-rate, picosecond source at 2.1  μm,” Laser Photon. Rev. 10, 970–977 (2016).
[Crossref]

2015 (2)

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm: CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
[Crossref]

2014 (4)

K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4-14  μm GaAs optical parametric oscillator pumped at 3  μm,” Opt. Express 22, 4131–4136 (2014).
[Crossref]

C. Laporte, J. Dherbecourt, J. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Analysis of cavity-length detuning in diffraction-grating narrowed picosecond optical parametric oscillators,” J. Opt. Soc. Am. B 31, 1026–1034 (2014).
[Crossref]

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
[Crossref]

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

2013 (1)

2012 (1)

2010 (2)

2007 (1)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

2006 (2)

2004 (1)

2001 (1)

1999 (2)

P. Schlup, I. T. McKinnie, and S. D. Butterworth, “Single-mode, singly resonant, pulsed periodically poled lithium niobate optical parametric oscillator,” Appl. Opt. 38, 7398–7401 (1999).
[Crossref]

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

1996 (1)

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

1991 (2)

Ahmad, H.

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Amiri, I. S.

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Anstett, G.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Aoki, T.

Asai, K.

Bartschke, J.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Bauer, T.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Butterworth, S. D.

Carter, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
[Crossref]

Cass, C. B.

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

Caughey, T.

Cha, S.

Chaitanya Kumar, S.

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “Yb-fiber-based, high-average-power, high-repetition-rate, picosecond source at 2.1  μm,” Laser Photon. Rev. 10, 970–977 (2016).
[Crossref]

Chan, K. P.

Cresswell, M. D.

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

Dherbecourt, J.

Drag, C.

Dunn, M. H.

M. Ebrahim-Zadeh and M. H. Dunn, “Optical parametric oscillators,” in Handbook of Optics, 2nd ed., Vol. IV (McGraw-Hill, 2000), pp. 1–72.

Dziennis, S.

Ebrahim-Zadeh, M.

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “Yb-fiber-based, high-average-power, high-repetition-rate, picosecond source at 2.1  μm,” Laser Photon. Rev. 10, 970–977 (2016).
[Crossref]

M. Ebrahim-Zadeh and M. H. Dunn, “Optical parametric oscillators,” in Handbook of Optics, 2nd ed., Vol. IV (McGraw-Hill, 2000), pp. 1–72.

Fan, D.

Fejer, M. M.

Feng, D.

Feng, J.

Fraundorfer, M. R.

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

Fujii, M.

Fukuoka, H.

Ganikhanov, F.

Gilling, P. J.

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

Godard, A.

Gorajek, L.

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

Grund, C. J.

J. L. Machol, R. M. Hardesty, B. J. Rye, and C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 321–324.

Guo, J.

Haidar, S.

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

Hale, C. P.

Hardesty, R. M.

J. L. Machol, R. M. Hardesty, B. J. Rye, and C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 321–324.

Harris, J. S.

Harun, S. W.

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Haub, J.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
[Crossref]

Hauffaker, A. V.

He, Y.

Hemming, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
[Crossref]

Henderson, S. W.

Henriksson, M.

Huang, H.

Ishii, S.

Ishikawa, T.

Ishizuki, H.

Ismail, M. F.

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Itabe, T.

Ito, H.

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

Iwai, H.

Jabczynski, J. K.

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

Kaskow, M.

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

Kavaya, M. J.

Khodaie, A.

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Killinger, D. K.

Kong, L. C.

Kuo, P. S.

Kwiatkowski, J.

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

L’Huillier, J. A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Laporte, C.

Laurell, F.

Levi, O.

Li, B.

Li, P.

Liu, H.

Liu, P.

Lu, J.

Lu, Q.

Luo, Q.

Machol, J. L.

J. L. Machol, R. M. Hardesty, B. J. Rye, and C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 321–324.

Magee, J. R.

Maidment, L.

Makasyuk, I.

Malcolm, A. R.

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

McKinnie, I. T.

Mei, J.

D. Yan, Y. Wang, D. Xu, W. Shi, K. Zhong, P. Liu, C. Yan, J. Mei, J. Shi, and J. Yao, “High power, widely tunable dual-wavelength 2  μm laser based on intracavity KTP optical parametric oscillator,” J. Phys. D 50, 035104 (2017).
[Crossref]

Melkonian, J.

Mizutani, K.

Nittmann, M.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Pasiskevicius, V.

Paul, O.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Philippe, B.

Pinguet, T. J.

Qian, L. J.

Qin, J.

Qin, Z. P.

Quosig, A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

Raybaut, M.

Reid, D. T.

Reif, R.

Rye, B. J.

J. L. Machol, R. M. Hardesty, B. J. Rye, and C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 321–324.

Saikawa, J.

Sato, A.

Schlup, P.

Schunemann, P. G.

Shen, D.

Shi, J.

Shi, L.

Shi, W.

Simakov, N.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
[Crossref]

Soltanian, M. R. K.

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Taira, T.

Tang, L.

Tiihonen, M.

Tsang, Y. H.

Vodopyanov, K. L.

Wang, F.

Wang, H.

Wang, J.

Wang, R. K.

Wang, Y.

Xie, G. Q.

Xu, D.

Xu, J.

Xu, X. D.

Yan, C.

Yan, D.

Yao, J.

Yuan, P.

Zendzian, W.

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

Zhong, K.

Appl. Opt. (3)

Appl. Phys. B (2)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007).
[Crossref]

J. Kwiatkowski, J. K. Jabczynski, W. Zendzian, L. Gorajek, and M. Kaskow, “High repetition rate, Q-switched Ho: YAG laser resonantly pumped by a 20  W linearly polarized Tm: fiber laser,” Appl. Phys. B 114, 395–399 (2014).
[Crossref]

J. Endourol. (1)

P. J. Gilling, C. B. Cass, M. D. Cresswell, A. R. Malcolm, and M. R. Fraundorfer, “The use of the holmium laser in the treatment of benign prostatic hyperplasia,” J. Endourol. 10, 459–461 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

D. Yan, Y. Wang, D. Xu, W. Shi, K. Zhong, P. Liu, C. Yan, J. Mei, J. Shi, and J. Yao, “High power, widely tunable dual-wavelength 2  μm laser based on intracavity KTP optical parametric oscillator,” J. Phys. D 50, 035104 (2017).
[Crossref]

Laser Photon. Rev. (1)

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “Yb-fiber-based, high-average-power, high-repetition-rate, picosecond source at 2.1  μm,” Laser Photon. Rev. 10, 970–977 (2016).
[Crossref]

Opt. Commun. (1)

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20, 621–630 (2014).
[Crossref]

Opt. Lett. (9)

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, and M. M. Fejer, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “52  mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO: LiNbO3 device,” Opt. Lett. 31, 3149–3151 (2006).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm: fiber laser using volume Bragg gratings,” Opt. Lett. 35, 2388–2390 (2010).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm: CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
[Crossref]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2  μm source,” Opt. Lett. 31, 1878–1880 (2006).
[Crossref]

J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37, 4005–4007 (2012).
[Crossref]

J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38, 3690–3692 (2013).
[Crossref]

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Hauffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho: YAG lasers,” Opt. Lett. 16, 773–775 (1991).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Sci. Rep. (1)

M. R. K. Soltanian, H. Ahmad, A. Khodaie, I. S. Amiri, M. F. Ismail, and S. W. Harun, “A stable dual-wavelength thulium-doped fiber laser at 1.9  μm using photonic crystal fiber,” Sci. Rep. 5, 14537 (2015).
[Crossref]

Other (2)

J. L. Machol, R. M. Hardesty, B. J. Rye, and C. J. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 321–324.

M. Ebrahim-Zadeh and M. H. Dunn, “Optical parametric oscillators,” in Handbook of Optics, 2nd ed., Vol. IV (McGraw-Hill, 2000), pp. 1–72.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1. Schematic of the experimental setup for the intracavity prism-coupled tunable 2 μm source. HWP, half-wave plate; M, mirrors; L, lens; M1, input plane mirror; P, TF3 prism; OC, output coupler; F, filter. Inset: visualization of the actual setup.
Fig. 2.
Fig. 2. Signal wavelength tuning range and total output power generated from the prism-coupled nanosecond OPO. The solid curves are a guide to the eye.
Fig. 3.
Fig. 3. Wavelength tuning of the OPO. The filled and hollow circles represent the experimental data, while the solid curve is the calculated tuning range. Inset: temperature acceptance bandwidth for degenerate operation at 2128 nm.
Fig. 4.
Fig. 4. (a) Signal spectrum over the entire tuning range of the OPO. (b) Spectral stability over 1 h measured near degeneracy. (c) Spectral bandwidth stability over 1 h measured near degeneracy.
Fig. 5.
Fig. 5. Spectral bandwidth measurements of the OPO output using the home-built grating spectrometer. (a) Spectrum at 71°C with peak separation (Δ) of 4.2 nm. (b) Spectrum at 73°C with Δ3.4  nm. (c) Spectrum at 75°C with Δ2.7  nm. (d) Spectrum at 76.5°C with Δ2.3  nm. (e) Spectrum at 77.5°C with Δ1.8  nm. (f) Spectrum at degeneracy temperature of 78.5°C with center wavelength at 2128 nm and FWHM of 3  nm.
Fig. 6.
Fig. 6. Output power scaling of the prism-coupled MgO:PPLN OPO at various temperatures.
Fig. 7.
Fig. 7. Maximum average output power and output pulse duration at different signal wavelengths. Inset: pulse duration measurement at degeneracy.
Fig. 8.
Fig. 8. (a)–(d) Measurements of power stability for the OPO at different crystal temperatures, corresponding to different output wavelengths, and (e) pump beam over 1 h.
Fig. 9.
Fig. 9. (a), (b) Measurement of M2 beam quality of the OPO output at the degenerate wavelength of 2128 nm along the x and y axes. (c) Spatial beam profile of the OPO output at degeneracy.
Fig. 10.
Fig. 10. Output spectrum from the nanosecond OPO using (a) conventional plane-mirror cavity with no frequency selection elements, and (b) prism cavity.
Fig. 11.
Fig. 11. Schematic of the experimental setup for the 2.1  μm source pumped by a Yb-based fiber laser at 1064 nm. FI, Faraday isolator; HWP, half-wave plate; PBS, polarizing beam-splitter; BD, beam dumper; M, mirrors; L, lenses; IDG, intracavity diffraction grating; OC, output coupler; F, filter.
Fig. 12.
Fig. 12. (a) Parametric gain bandwidth of the OPO at degeneracy. (b) GVM between the pump and the signal and the corresponding GVD as a function of the signal wavelength.
Fig. 13.
Fig. 13. (a) Spectral characterization of the output beam from the OPO using a 400 lines/mm IDG at blaze angle of 25.2°. (b) Calculated FWHM spectral bandwidth as a function of the beam diameter on the IDG with 400 lines/mm. Inset: measured beam profile on the diffraction grating.
Fig. 14.
Fig. 14. (a) Simultaneously measured output power and pump depletion as a function of the pump power for the picosecond OPO, and (b) long-term power stability of the output from the degenerate OPO operating at 2.1 μm. Inset: spatial beam distribution of the OPO output at 2128 nm.
Fig. 15.
Fig. 15. M2 measurement of the output beam at degeneracy along (a) x axis, and (b) y axis.
Fig. 16.
Fig. 16. Cavity-delay tuning of the picosecond OPO for an input pump power of 13 W at degeneracy.
Fig. 17.
Fig. 17. (a) Spectrum of the resonating signal from the picosecond OPO at different IDG angles, and (b) estimated spectral bandwidth selectivity as a function of the blaze angle deviation.
Fig. 18.
Fig. 18. Output spectrum from the synchronously pumped picosecond OPO using (a) plane-mirror cavity, and (b) intracavity diffraction grating in Littrow configuration for spectral control.

Tables (2)

Tables Icon

Table 1. Comparison of the Performance Characteristics of the Plane-Mirror Nanosecond OPO and the Prism Cavity

Tables Icon

Table 2. Comparison of the Performance Characteristics of the Plane-Mirror Picosecond OPO and the IDG Cavity

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d×[sin(aΔx)+sin(b+Δx)]=m×λ,
R=m×N=λ/Δλ,
Δλestimated=ln(2)λ2πw0tan(θ),
λ=2dsin(θ),