Abstract

We investigate an experimentally feasible scheme for amplification of superpositions of coherent states (SCSs) in light fields. This scheme mixes two input SCSs at a 50:50 beam splitter and performs postselection by a homodyne detection on one output mode. The key idea is to use two different types of SCSs with opposite parities for input states, which results in an amplified output SCS with a nearly perfect fidelity.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient noiseless linear amplification for light fields with larger amplitudes

Jinwoo Park, Jaewoo Joo, Alessandro Zavatta, Marco Bellini, and Hyunseok Jeong
Opt. Express 24(2) 1331-1346 (2016)

Quantum teleportation protocol with an assistant who prepares amplitude modulated unknown qubits

Sergey A. Podoshvedov
J. Opt. Soc. Am. B 35(4) 861-877 (2018)

Quantum repeaters with entangled coherent states

Nicolas Sangouard, Christoph Simon, Nicolas Gisin, Julien Laurat, Rosa Tualle-Brouri, and Philippe Grangier
J. Opt. Soc. Am. B 27(6) A137-A145 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription