Abstract

Simple structure, quick response, and highly sensitive miniaturized sensors are highly desirable for the broad range of sensing applications. In this work, we numerically investigated a highly sensitive photonic-crystal-fiber (PCF)-based plasmonic sensor for refractive index sensing. We consider gold as the plasmonic material, which is used outside the fiber structure to exhibit the plasmonic phenomena and to help detect the surrounding medium refractive index. The proposed PCF is designed to enable the evanescent field to interact with an external sensing medium leading to a highly sensitive response. The sensor performance has been investigated by wavelength and amplitude interrogation methods. The proposed sensor exhibits the maximum amplitude sensitivity of 2,843RIU1 with the sensor resolution of 3.5×106RIU, which is the highest among the reported PCF SPR sensors, to the best of our knowledge. It also shows wavelength sensitivity of 18,000 nm/RIU and sensor resolution of 5.6×106RIU. The figure of merit of the proposed sensor is about 400. The sensor response also allows us to detect the refractive index variation in the range of 1.33 to 1.41. Such promising results and broad sensing range ensure that the proposed sensor will be a suitable candidate for biological analytes and biochemical and organic chemical detections.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum

Md. Saiful Islam, Jakeya Sultana, Ahmmed. A. Rifat, Rajib Ahmed, Alex Dinovitser, Brian W.-H. Ng, Heike Ebendorff-Heidepriem, and Derek Abbott
Opt. Express 26(23) 30347-30361 (2018)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153, 194–198 (2011).
    [Crossref]
  2. A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
    [Crossref]
  3. A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured optical fiber-based plasmonic sensors,” in Computational Photonic Sensors (Springer, 2019), pp. 203–232.
  4. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  5. M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.
  6. Y. Zhao, Z.-Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
    [Crossref]
  7. S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
    [Crossref]
  8. B. D. Gupta, “Surface plasmon resonance based fiber optic sensors,” in Reviews in Plasmonics 2010 (Springer, 2012), pp. 105–137.
  9. J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
    [Crossref]
  10. A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
    [Crossref]
  11. A. A. Rifat, G. Mahdiraji, Y. M. Sua, R. Ahmed, Y. Shee, and F. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24, 2485–2495 (2016).
    [Crossref]
  12. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
    [Crossref]
  13. J.-N. Wang and J.-L. Tang, “Photonic crystal fiber Mach–Zehnder interferometer for refractive index sensing,” Sensors 12, 2983–2995 (2012).
    [Crossref]
  14. Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
    [Crossref]
  15. A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
    [Crossref]
  16. J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt. 57, 4002–4007 (2018).
    [Crossref]
  17. M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57, 1883–1886 (2018).
    [Crossref]
  18. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26, 9039–9049 (2018).
    [Crossref]
  19. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25, 14227–14237 (2017).
    [Crossref]
  20. G. An, X. Hao, S. Li, X. Yan, and X. Zhang, “D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Appl. Opt. 56, 6988–6992 (2017).
    [Crossref]
  21. G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
    [Crossref]
  22. X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photon. J. 10, 6800709 (2018).
    [Crossref]
  23. F. Wang, Z. Sun, C. Liu, T. Sun, and P. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electron. Rev. 26, 50–56 (2018).
    [Crossref]
  24. M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. 76, 287–294 (2018).
    [Crossref]
  25. X. Dong, H. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [Crossref]
  26. P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [Crossref]
  27. P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
    [Crossref]

2018 (8)

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
[Crossref]

J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt. 57, 4002–4007 (2018).
[Crossref]

M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57, 1883–1886 (2018).
[Crossref]

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26, 9039–9049 (2018).
[Crossref]

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photon. J. 10, 6800709 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electron. Rev. 26, 50–56 (2018).
[Crossref]

M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. 76, 287–294 (2018).
[Crossref]

2017 (3)

2016 (2)

A. A. Rifat, G. Mahdiraji, Y. M. Sua, R. Ahmed, Y. Shee, and F. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24, 2485–2495 (2016).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

2015 (1)

2014 (3)

Y. Zhao, Z.-Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

2013 (1)

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

2012 (2)

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
[Crossref]

J.-N. Wang and J.-L. Tang, “Photonic crystal fiber Mach–Zehnder interferometer for refractive index sensing,” Sensors 12, 2983–2995 (2012).
[Crossref]

2011 (1)

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153, 194–198 (2011).
[Crossref]

2007 (1)

X. Dong, H. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

2006 (1)

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Abdelmonem, M. R.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Adikan, F. M.

Ahmed, R.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

A. A. Rifat, G. Mahdiraji, Y. M. Sua, R. Ahmed, Y. Shee, and F. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24, 2485–2495 (2016).
[Crossref]

A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured optical fiber-based plasmonic sensors,” in Computational Photonic Sensors (Springer, 2019), pp. 203–232.

Akter, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.

Ali, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.

Amezcua-Correa, A.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Amirkhan, F.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Amouzad Mahdiraji, G.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

An, G.

Azab, M. Y.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Azzam, S. I.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Baril, N. F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Butt, H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Chen, X.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photon. J. 10, 6800709 (2018).
[Crossref]

Chow, D. M.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Chu, P.

F. Wang, Z. Sun, C. Liu, T. Sun, and P. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electron. Rev. 26, 50–56 (2018).
[Crossref]

Chu, P. K.

Dash, J. N.

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

Deng, Z.-Q.

Y. Zhao, Z.-Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Dermosesian, E.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Dong, X.

X. Dong, H. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Duan, L.-C.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

El-Saeed, A. H.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Feng, X.

Finlayson, C. E.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Ghomeishi, M.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Gupta, B. D.

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153, 194–198 (2011).
[Crossref]

B. D. Gupta, “Surface plasmon resonance based fiber optic sensors,” in Reviews in Plasmonics 2010 (Springer, 2012), pp. 105–137.

Hameed, M. F. O.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Hao, C.-J.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Hao, X.

Hasan, M. R.

M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. 76, 287–294 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.

A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured optical fiber-based plasmonic sensors,” in Computational Photonic Sensors (Springer, 2019), pp. 203–232.

Hashish, M. E.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Hayes, J. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Heikal, A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Hnatowicz, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
[Crossref]

Ibrahim, M. A.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Jackson, B. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Jha, R.

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

Kakaei, Z.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Khalil, A. E.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Li, C.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photon. J. 10, 6800709 (2018).
[Crossref]

Li, J.

Y. Zhao, Z.-Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Li, S.

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Liu, C.

Liu, M.

Liu, Q.

Liu, Y.

Lu, X.

Lu, Y.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Luan, N.

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Lv, J.

Lv, W.

Mahdiraji, G.

Mahdiraji, G. A.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Malinský, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
[Crossref]

Margine, E. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Miroshnichenko, A. E.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
[Crossref]

A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured optical fiber-based plasmonic sensors,” in Computational Photonic Sensors (Springer, 2019), pp. 203–232.

Momota, M. R.

M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. 76, 287–294 (2018).
[Crossref]

Mu, H.

Musideke, M.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Obayya, S.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

Obayya, S. S.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Poh, S. Y.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Rana, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.

Rifat, A. A.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

A. A. Rifat, G. Mahdiraji, Y. M. Sua, R. Ahmed, Y. Shee, and F. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24, 2485–2495 (2016).
[Crossref]

A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured optical fiber-based plasmonic sensors,” in Computational Photonic Sensors (Springer, 2019), pp. 203–232.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.

Sabouri, A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Sandoghchi, S.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Sazio, P. J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Scheidemantel, T. J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Shee, Y.

Shehata, R. E. A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Shi, M.

Shum, P.

M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57, 1883–1886 (2018).
[Crossref]

X. Dong, H. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Slepicka, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153, 194–198 (2011).
[Crossref]

Su, W.

Sua, Y. M.

Sun, T.

Sun, Z.

F. Wang, Z. Sun, C. Liu, T. Sun, and P. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electron. Rev. 26, 50–56 (2018).
[Crossref]

Švorcík, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
[Crossref]

Tam, H.

X. Dong, H. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Tang, J.-L.

J.-N. Wang and J.-L. Tang, “Photonic crystal fiber Mach–Zehnder interferometer for refractive index sensing,” Sensors 12, 2983–2995 (2012).
[Crossref]

Verma, R.

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153, 194–198 (2011).
[Crossref]

Wang, F.

Wang, J.-N.

J.-N. Wang and J.-L. Tang, “Photonic crystal fiber Mach–Zehnder interferometer for refractive index sensing,” Sensors 12, 2983–2995 (2012).
[Crossref]

Wang, R.

Wang, X.

Wen, W.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Won, D.-J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Wu, B.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Wu, J.

Xia, L.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photon. J. 10, 6800709 (2018).
[Crossref]

Yan, X.

Yang, L.

Yang, X.

Yao, J.

Yao, J.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Yeo, K. S.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Yetisen, A. K.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Yu Gang, S.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

Yuan, H.

Yun, S. H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Zhang, F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Zhang, X.

Zhao, Y.

Y. Zhao, Z.-Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Dong, H. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Fiber Integr. Opt. (1)

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, and S. Yu Gang, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33, 85–104 (2014).
[Crossref]

IEEE Photon. J. (1)

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photon. J. 10, 6800709 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

Nano. Res. Lett. (1)

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nano. Res. Lett. 7, 241 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

M. R. Momota and M. R. Hasan, “Hollow-core silver coated photonic crystal fiber plasmonic sensor,” Opt. Mater. 76, 287–294 (2018).
[Crossref]

Opt. Quantum Electron. (2)

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50, 158 (2018).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Opto-Electron. Rev. (1)

F. Wang, Z. Sun, C. Liu, T. Sun, and P. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electron. Rev. 26, 50–56 (2018).
[Crossref]

Science (1)

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sens. Actuators B Chem. (3)

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153, 194–198 (2011).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Y. Zhao, Z.-Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Sensors (2)

J.-N. Wang and J.-L. Tang, “Photonic crystal fiber Mach–Zehnder interferometer for refractive index sensing,” Sensors 12, 2983–2995 (2012).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Other (3)

A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured optical fiber-based plasmonic sensors,” in Computational Photonic Sensors (Springer, 2019), pp. 203–232.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Photonics (Multidisciplinary Digital Publishing Institute, 2017), p. 18.

B. D. Gupta, “Surface plasmon resonance based fiber optic sensors,” in Reviews in Plasmonics 2010 (Springer, 2012), pp. 105–137.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Cross-section of the (a) proposed sensor and (b) preform structure of the proposed PCF.
Fig. 2.
Fig. 2. (a) and (b) Core-guided mode of y polarization for na=1.33, na=1.37, respectively. (c) and (d) y-polarization SPP mode for na=1.33, na=1.37, respectively. (e) Dispersion relation of fundamental core-guided mode and SPP mode.
Fig. 3.
Fig. 3. (a) Loss spectrum by changing analyte RI from 1.33 to 1.41. (b) Normalized loss intensity as a function of analyte RI. (c) Resonant wavelength as a function of analyte RI. (d) Amplitude sensitivity spectrum for analyte RI from 1.33 to 1.41. (e) FOM and FWHM as a function of analyte RI.
Fig. 4.
Fig. 4. (a) Loss spectrum with variation of gold layer thickness. (b) Amplitude sensitivity of various gold layer thickness for analyte RI 1.33.
Fig. 5.
Fig. 5. Fabrication tolerance investigation. (a) Scaled-down air-hole diameter (ds) effects on sensing. (b) Regular air-hole (d) effects on sensing. (c) Pitch size effects on sensing. (d) Liquid layer thickness effects on sensing.

Tables (2)

Tables Icon

Table 1. Performance Analysis of the Proposed Sensor

Tables Icon

Table 2. Comparison of the Proposed Sensor Performance with Existing Sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)=1+B1λ2λ2c1+B2λ2λ2c2+B3λ2λ2c3,
ϵAu=ϵωD2ω(ω+jγD)Δϵ·ΩL2(ω2ΩL2)+jΓLω,
α(dB/cm)=8.686×k0Im(neff)×104,
Sλ(λ)=Δλpeak/Δna,
R(RIU)=Δna×Δλmin/Δλpeak,
SA(λ)[RIU1]=1α(λ,na)α(λ,na)na.

Metrics