Abstract

Shock waves can achieve extreme states of pressure and temperature, of particular interest because those conditions can result in non-equilibrium material dynamics that evolve on ultrafast timescales. Examples of such phenomena include shock-induced chemistry and phase transitions. Traditional plate impact methods lack the necessary time and space resolution needed to observe the onset of ultrafast nanoscale phenomena. Sub-picosecond time scale and nanometer spatial scale shock compression and diagnostics methods have been developed to surmount such difficulties. This paper reviews a number of nanoscale shock wave generation methods, as well as the diagnostics that are applicable at these restrictive time and spatial scales.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Indirect ignition of energetic materials with laser-driven flyer plates

Steven W. Dean, Frank C. De Lucia, and Jennifer L. Gottfried
Appl. Opt. 56(3) B134-B141 (2017)

Densification of fused silica due to shock waves and its implications for 351 nm laser induced damage

A. Kubota, M.-J. Caturla, J. S. Stölken, and M. D. Feit
Opt. Express 8(11) 611-616 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription