Abstract

Engineering the diversity of the spatial structure of polarization states offers a new approach to produce controllable and designable filament patterns. Here we predict theoretically and demonstrate experimentally the novel collapsing behaviors of the optical fields by using the elliptical symmetry hybrid polarization structure in a self-focusing Kerr medium. The results reveal that the distribution of the hybrid polarization states, the spin angular momentum (SAM) gradient, and the collapsing patterns could be manipulated by changing the eccentricity, the topological charge, and the initial phase of the optical field. Owing to the synergy of the hybrid polarization states and its spatial symmetry, the collapsing behaviors are controllable, and have the robust feature insensitive to the random noise. Our idea may offer an alternative route to produce the controllable and robust multiple filamentation in other nonlinear systems, thereby facilitating the development of additional surprising applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond polarization-structured optical field meets an anisotropic nonlinear medium

Dan Wang, Gui-Geng Liu, Jia-Qi Lü, Ping-Ping Li, Meng-Qiang Cai, Guan-Lin Zhang, Yongnan Li, Chenghou Tu, and Hui-Tian Wang
Opt. Express 26(21) 27726-27747 (2018)

Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization

Si-Min Li, Zhi-Cheng Ren, Ling-Jun Kong, Sheng-Xia Qian, Chenghou Tu, Yongnan Li, and Hui-Tian Wang
Photon. Res. 4(5) B29-B34 (2016)

Vectorial effect of hybrid polarization states on the collapse dynamics of a structured optical field

Rui-Pin Chen, Khian-Hooi Chew, Guoquan Zhou, Chao-Qing Dai, and Sailing He
Opt. Express 24(24) 28143-28153 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Robinson, “Nonlinear wave collapse and strong turbulence,” Rev. Mod. Phys. 69, 507–574 (1997).
    [Crossref]
  2. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
    [Crossref]
  3. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  4. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
    [Crossref]
  5. F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
    [Crossref]
  6. G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Phys. D 157, 112–146 (2001).
    [Crossref]
  7. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  8. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
    [Crossref]
  9. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
    [Crossref]
  10. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
    [Crossref]
  11. S. Varma, Y. H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101, 205001 (2008).
    [Crossref]
  12. J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008).
    [Crossref]
  13. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
    [Crossref]
  14. Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
    [Crossref]
  15. J. Zhao, L. Guo, W. Chu, B. Zeng, H. Gao, Y. Cheng, and W. Liu, “Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate,” Opt. Lett. 40, 3838–3841 (2015).
    [Crossref]
  16. A. Camino, Z. Hao, X. Liu, and J. Lin, “High spectral power femtosecond supercontinuum source by use of microlens array,” Opt. Lett. 39, 747–750 (2014).
    [Crossref]
  17. Z. Jin, J. Zhang, M. H. Xu, X. Lu, Y. T. Li, Z. H. Wang, Z. Y. Wei, X. H. Yuan, and W. Yu, “Control of filamentation induced by femtosecond laser pulses propagating in air,” Opt. Express 13, 10424–10430 (2005).
    [Crossref]
  18. A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29, 1126–1128 (2004).
    [Crossref]
  19. T. D. Grow and A. L. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13, 4594–4599 (2005).
    [Crossref]
  20. T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark, and S. R. Leone, “Circular phase mask for control and stabilization of single optical filaments,” Opt. Lett. 31, 2326–2328 (2006).
    [Crossref]
  21. V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
    [Crossref]
  22. Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19, 7799–7806 (2011).
    [Crossref]
  23. Z. Q. Hao, J. Zhang, T. T. Xi, X. H. Yuan, Z. Y. Zheng, X. Lu, M. Y. Yu, Y. T. Li, Z. H. Wang, W. Zhao, and Z. Y. Wei, “Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole,” Opt. Express 15, 16102–16109 (2007).
    [Crossref]
  24. W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs,” ACS Photonics 3, 640–646 (2016).
    [Crossref]
  25. S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
    [Crossref]
  26. S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
    [Crossref]
  27. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
    [Crossref]
  28. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000).
    [Crossref]
  29. G. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

2016 (2)

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs,” ACS Photonics 3, 640–646 (2016).
[Crossref]

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

2012 (1)

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

2011 (1)

2010 (3)

X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

2008 (2)

S. Varma, Y. H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101, 205001 (2008).
[Crossref]

J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008).
[Crossref]

2007 (4)

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Z. Q. Hao, J. Zhang, T. T. Xi, X. H. Yuan, Z. Y. Zheng, X. Lu, M. Y. Yu, Y. T. Li, Z. H. Wang, W. Zhao, and Z. Y. Wei, “Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole,” Opt. Express 15, 16102–16109 (2007).
[Crossref]

2006 (1)

2005 (2)

2004 (2)

A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29, 1126–1128 (2004).
[Crossref]

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

2003 (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

2001 (1)

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Phys. D 157, 112–146 (2001).
[Crossref]

2000 (1)

1997 (1)

P. A. Robinson, “Nonlinear wave collapse and strong turbulence,” Rev. Mod. Phys. 69, 507–574 (1997).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

1965 (1)

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Abel, M. J.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

Aközbek, N.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Alshershby, M.

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

André, Y. B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Belgiorno, F.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Cacciatori, S. L.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Camino, A.

Chen, J.

Chen, Y. H.

S. Varma, Y. H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101, 205001 (2008).
[Crossref]

Cheng, Y.

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Chin, S. L.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Chu, W.

Clerici, M.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Couairon, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

D’Amico, C.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Ding, J. P.

Dubietis, A.

Faccio, D.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Fibich, G.

Franco, M.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Gaeta, A. L.

Gallmann, L.

Gao, H.

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Gorini, V.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Grow, T. D.

Guo, C. S.

Guo, L.

Hao, Z.

A. Camino, Z. Hao, X. Liu, and J. Lin, “High spectral power femtosecond supercontinuum source by use of microlens array,” Opt. Lett. 39, 747–750 (2014).
[Crossref]

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Hao, Z. Q.

Henin, S.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Hosseini, S. A.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Houard, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Ilan, B.

A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29, 1126–1128 (2004).
[Crossref]

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Phys. D 157, 112–146 (2001).
[Crossref]

Jin, Z.

Kandidov, V. P.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Kasparian, J.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Kelley, P. L.

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

Kong, L. J.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

Kosareva, O. G.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Lascoux, N.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Leone, S. R.

Li, S. M.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

Li, Y. N.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

Li, Y. T.

Lin, J.

A. Camino, Z. Hao, X. Liu, and J. Lin, “High spectral power femtosecond supercontinuum source by use of microlens array,” Opt. Lett. 39, 747–750 (2014).
[Crossref]

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

Litchinitser, N. M.

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs,” ACS Photonics 3, 640–646 (2016).
[Crossref]

Liu, W.

Liu, X.

Lou, K.

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

Lu, X.

Luo, Q.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Milchberg, H. M.

S. Varma, Y. H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101, 205001 (2008).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Nakaema, W. M.

Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19, 7799–7806 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Neumark, D. M.

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Nyakk, A. V.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Ortenzi, G.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Petit, Y.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Pfeifer, T.

Prade, B.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Qian, S. X.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

Queißer, M.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Ren, Y.

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

Ren, Z. C.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

Rizzi, L.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Robinson, P. A.

P. A. Robinson, “Nonlinear wave collapse and strong turbulence,” Rev. Mod. Phys. 69, 507–574 (1997).
[Crossref]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Rohwetter, P.

Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19, 7799–7806 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Rubino, E.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Sala, V. G.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Salamé, R.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Salmon, E.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Scalora, M.

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Stelmaszczyk, K.

Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19, 7799–7806 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Tamošauskas, G.

Tian, Y. J.

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

Tikhonchuk, V. T.

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Tu, C. H.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

Varma, S.

S. Varma, Y. H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101, 205001 (2008).
[Crossref]

Walasik, W.

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs,” ACS Photonics 3, 640–646 (2016).
[Crossref]

Wang, H. T.

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

Wang, X. L.

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

Wang, Z. H.

Wei, Z. Y.

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Woeste, L.

Wolf, J. P.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Wöste, L.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Xi, T. T.

Xu, M. H.

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Yu, M. Y.

Yu, W.

Yuan, X. H.

Zeng, B.

Zhang, J.

Zhao, J.

Zhao, W.

Zhao, Z.

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

Zheng, Z. Y.

ACS Photonics (1)

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs,” ACS Photonics 3, 640–646 (2016).
[Crossref]

Nat. Photonics (1)

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Photonics Res. (1)

S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu, Y. N. Li, and H. T. Wang, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photonics Res. 4, B29–B34 (2016).
[Crossref]

Phys. D (1)

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Phys. D 157, 112–146 (2001).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. E (1)

Y. Ren, M. Alshershby, Z. Hao, Z. Zhao, and J. Lin, “Microwave guiding along double femtosecond filaments in air,” Phys. Rev. E 88, 013104 (2013).
[Crossref]

Phys. Rev. Lett. (6)

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

S. Varma, Y. H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101, 205001 (2008).
[Crossref]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Quantum Electron. (1)

V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse,” Quantum Electron. 34, 879–880 (2004).
[Crossref]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[Crossref]

Rev. Mod. Phys. (1)

P. A. Robinson, “Nonlinear wave collapse and strong turbulence,” Rev. Mod. Phys. 69, 507–574 (1997).
[Crossref]

Sci. Rep. (1)

S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang, “Taming the collapse of optical fields,” Sci. Rep. 2, 1007 (2012).
[Crossref]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric,” Science 301, 61–64 (2003).
[Crossref]

Other (1)

G. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic distributions of the polarization states and the SAM for the ES-AV-HP-VOFs with m=1 and δ0=0 for different eccentricities (ϵ=0,0.3,0.6,0.8).
Fig. 2.
Fig. 2. Simulated nonlinear propagation behaviors of the ES-AV-HP-VOFs (m=1,δ0=0) with different ϵ(=0,0.6,0.8) in the Kerr medium. The first and second rows show the cases without and with random noise (ϵ=0), respectively. For comparison, the ES-AV-HP-VOFs (ϵ0) without and with random noise are also shown in the third and fourth rows for the case of ϵ=0.6 and in the fifth and sixth rows for the case of ϵ=0.8. The four columns (from left to right) correspond to four propagation distances (ζ=0,0.6,1.2,1.8).
Fig. 3.
Fig. 3. Simulated evolution S3 of the azimuthal-variant polarization states for the ES-AV-HP-VOFs (m=1,δ0=0) with different eccentricity. (a) ϵ=0 and (b) ϵ=0.8.
Fig. 4.
Fig. 4. Simulated nonlinear propagation behaviors of ES-AV-HP-VOFs (m=1,δ0=π/4) with the different ϵ(=0,0.6,0.8) in the Kerr medium. The first and second rows show the cases without and with random noise (ϵ=0), respectively. For comparison, the ES-AV-HP-VOFs (ϵ0) without and with random noise are also shown in the third and fourth rows for the case ϵ=0.6 and in the fifth and sixth rows for the case ϵ=0.8. The four columns (from left to right) correspond to four propagation distances (ζ=0,0.6,1.2,1.8).
Fig. 5.
Fig. 5. Simulated evolution S3 of the azimuthal-variant polarization states for the ES-AV-HP-VOFs (m=1,δ0=π/4) with different eccentricity. (a) ϵ=0 and (b) ϵ=0.8.
Fig. 6.
Fig. 6. Simulated nonlinear propagation behaviors of ES-AV-HP-VOFs (m=1 and δ0=3π/8) with the different ϵ(=0,0.6,0.8) in the Kerr medium. The first and second rows show the cases without and with random noise (ϵ=0), respectively. For comparison, the ES-AV-HP-VOFs (ϵ0) without and with random noise are also shown in the third and fourth rows for the case ϵ=0.6 and in the fifth and sixth rows for the case ϵ=0.8. The four columns (from left to right) correspond to four propagation distances (ζ=0,0.6,1.2,1.8).
Fig. 7.
Fig. 7. Simulated evolution S3 of the azimuthal-variant polarization states for the ES-AV-HP-VOFs (m=1 and δ0=3π/8) with different eccentricity. (a) ϵ=0 and (b) ϵ0.
Fig. 8.
Fig. 8. Simulated collapsing evolution and multiple filamentation of the ES-AV-HP-VOFs. (a) CS-AV-HP-VOF with m=1 and δ0=0; (b) ES-AV-HP-VOF with m=1, ϵ=0.8, and δ0=0; (c) ES-AV-HP-VOF with m=1, ϵ=0.8, and δ0=π/4; and (d) ES-AV-HP-VOF with m=1, ϵ=0.8, and δ0=3π/8.
Fig. 9.
Fig. 9. Measured and simulated collapsing behaviors of the ES-AV-HP-VOFs (m=1) with the different ϵ(ϵ=0,0.6,0.8) in the Kerr medium. The first and second rows show the measured and simulated collapsing patterns of the ES-AV-HP-VOFs (m=1,δ0=0), respectively. For comparison, the measured and simulated collapsing patterns of the ES-AV-HP-VOFs are also shown in the third and fourth rows for the case (m=1,δ0=π/4) and in the fifth and sixth rows for the case (m=1,δ0=3π/8), respectively. The four columns (from the left to the right) correspond to four different ϵ(ϵ=0,0.6,0.8).
Fig. 10.
Fig. 10. SAM and the measured and simulated collapsing patterns of the ES-AV-HP-VOFs (m=2,δ0=0) with different eccentricity ϵ(=0,0.3,0.6,0.8).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E=A(r)(cosδe^H+jsinδe^V),
S3(ϕ)=σ(ϕ)=sin(2δ)=sin(2mϕ+2δ0)=sin[2marctan(a2tanϕ/b2)+2δ0].
S3(ϕ)|ϵ=0=σ(ϕ)|ϵ=0=sin(2mϕ+2δ0).
ψHζ=j42ψH+jαP3PC(3|ψH|2ψH+2|ψV|2ψH+ψV2ψH*),
ψVζ=j42ψV+jαP3PC(3|ψV|2ψV+2|ψH|2ψV+ψH2ψV*),
ψq(ρ,ϕ;ζ)=Eq(ρ,ϕ;ζ)[|EH(ρ,ϕ;ζ)|2+|EV(ρ,ϕ;ζ)|2]ρdρdϕ.

Metrics