Abstract

Interaction of an electron system with a strong electromagnetic wave leads to rearrangement of both the electron and vibrational energy spectra of a dissipative system. For instance, the optically coupled electron levels become split in the conditions of the ac Stark effect that gives rise to appearance of the nonadiabatic coupling between the electron and vibrational motions. The nonadiabatic coupling exerts a substantial impact on the electron and phonon dynamics and must be taken into account to determine the system states. In this paper, the mechanism of energy transfer between the electron system and the phonon reservoir is presented. This mechanism is based on establishment of the coupling between the electron states dressed by the electromagnetic field and the vibrations of reservoir oscillators. In the most general case, the photoinduced vibronic coupling is established by the interaction of electrons with the forced vibrations of reservoir oscillators under the action of rapid changing of the electron density with the Rabi frequency. However, if the resonance conditions for the optical phonon frequency and the transition frequency of electrons in the dressed state basis are satisfied, the vibronic coupling is due to the electron–phonon interaction. The photoinduced vibronic coupling results in the appearance of the states that are doubly dressed by interaction, the first time due to the electron–photon interaction, and the second time due to the electron–vibrational interaction. Moreover, this coupling opens the way to control energy that can be transferred to (heating) or removed from (cooling) the phonon reservoir depending on the parameters of the electromagnetic pulse.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vibronic model of laser cooling with stimulated Raman adiabatic passage pumping for Yb3+-ion-doped crystals

Andrei Ivanov, Yuriy Rozhdestvensky, and Evgeniy Perlin
J. Opt. Soc. Am. B 33(8) 1564-1573 (2016)

Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance

Ivan D. Rukhlenko, Anatoly V. Fedorov, Anvar S. Baymuratov, and Malin Premaratne
Opt. Express 19(16) 15459-15482 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription