Abstract

Theoretical and experimental studies were undertaken to investigate the grating-coupled excitation of multiple surface-plasmon-polariton (SPP) waves guided by the periodically corrugated interface of a metal and a chiral sculptured thin film (STF). The rigorous coupled-wave approach was adapted to calculate the absorptance spectrum of a structure comprising a chiral STF atop a rectangular metallic grating when that structure is illuminated by a linearly polarized plane wave whose wavevector lies wholly in the corrugation plane. The incidence direction could be either normal or oblique with respect to the thickness direction of the structure. High-absorptance bands for both s- and p-polarized incident plane waves were found to be correlated with the SPP wavenumbers calculated from the solution of the underlying canonical boundary-value problem, indicating that multiple distinct SPP waves can be excited at a specific frequency. The resistive-heating thermal evaporation technique was used to deposit chiral STFs of zinc selenide on gold gratings made by electron-beam lithography, and transmittance and reflectance spectra of the fabricated structures were measured in a variable-angle spectroscopic system in order to qualitatively validate the theoretical understanding. Several high-absorptance bands were found to be almost unaffected by the number of periods of the chiral STF. The existence of these bands indicated that as many as three distinct SPP waves were excited at a specific frequency in several spectral regimes by s- and/or p-polarized incident light.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film

John A. Polo, Jr., Tom G. Mackay, and Akhlesh Lakhtakia
J. Opt. Soc. Am. B 28(11) 2656-2666 (2011)

Dyakonov–Tamm waves guided by the planar surface of a chiral sculptured thin film

Muhammad Faryad, Akhlesh Lakhtakia, and Drew Patrick Pulsifer
J. Opt. Soc. Am. B 30(11) 3035-3040 (2013)

Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material

Muhammad Faryad, Anthony Shoji Hall, Greg D. Barber, Thomas E. Mallouk, and Akhlesh Lakhtakia
J. Opt. Soc. Am. B 29(4) 704-713 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  2. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [Crossref]
  4. K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
    [Crossref]
  5. V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
    [Crossref]
  6. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
    [Crossref]
  7. G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
    [Crossref]
  8. L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul, “Amplitude and phase images of cellular structures with a scanning surface plasmon microscope,” Opt. Express 19, 6571–6586 (2011).
    [Crossref]
  9. L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35, 246–252 (2013).
    [Crossref]
  10. J. S. Sekhon and S. S. Verma, “Plasmonics: the future wave of communication,” Curr. Sci. India 101, 484–488 (2011).
  11. J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008).
    [Crossref]
  12. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
    [Crossref]
  13. A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
    [Crossref]
  14. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
    [Crossref]
  15. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
    [Crossref]
  16. L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
    [Crossref]
  17. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
    [Crossref]
  18. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
  19. D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes, 2003).
  20. I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
  21. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London A 465, 87–107 (2009).
    [Crossref]
  22. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
    [Crossref]
  23. S. Erten and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves at metal/chiral-sculptured-thin-film interfaces,” Proc. SPIE 8465, 846513 (2012).
    [Crossref]
  24. S. E. Swiontek and A. Lakhtakia, “Influence of silver-nanoparticle layer in a chiral sculptured thin film for surface-multiplasmonic sensing of analytes in aqueous solution,” J. Nanophoton. 10, 033008 (2016).
    [Crossref]
  25. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
    [Crossref]
  26. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  27. K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
    [Crossref]
  28. M. Onishi, K. Crabtree, and R. A. Chipman, “Formulation of rigorous coupled-wave theory for gratings in bianisotropic media,” J. Opt. Soc. Am. A 28, 1747–1758 (2011).
    [Crossref]
  29. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
    [Crossref]
  30. N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
    [Crossref]
  31. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [Crossref]
  32. S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
    [Crossref]
  33. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
    [Crossref]
  34. D. P. Nicholls, S.-H. Oh, T. W. Johnson, and F. Reitich, “Launching surface plasmon waves via vanishingly small periodic gratings,” J. Opt. Soc. Am. A 33, 276–285 (2016).
    [Crossref]
  35. C. Rivas, M. E. Solano, R. Rodríguez, P. B. Monk, and A. Lakhtakia, “Asymptotic model for finite-element calculations of diffraction by shallow metallic surface-relief gratings,” J. Opt. Soc. Am. A 34, 68–79 (2017).
    [Crossref]
  36. Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).
  37. G. Lévêcque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
    [Crossref]
  38. J. Dutta, S. A. Ramakrishna, and A. Lakhtakia, “Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver,” J. Opt. Soc. Am. A 33, 1697–1704 (2016).
    [Crossref]
  39. S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. A 8, 770–779 (1991).
    [Crossref]
  40. M. V. Shuba and A. Lakhtakia, “Splitting of absorptance peaks in absorbing multilayer backed by a periodically corrugated metallic reflector,” J. Opt. Soc. Am. A 33, 779–784 (2016).
    [Crossref]
  41. S. Thoms, “Electron beam lithography,” in Nanofabrication Handbook, S. Cabrini and S. Kawata, eds. (CRC Press, 2012).
  42. R. F. Bunshah, ed., Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, 2nd ed. (Noyes, 1994).
  43. I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
    [Crossref]
  44. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
    [Crossref]

2017 (1)

2016 (4)

2015 (4)

S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

2013 (2)

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[Crossref]

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35, 246–252 (2013).
[Crossref]

2012 (1)

S. Erten and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves at metal/chiral-sculptured-thin-film interfaces,” Proc. SPIE 8465, 846513 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (3)

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[Crossref]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London A 465, 87–107 (2009).
[Crossref]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[Crossref]

2008 (3)

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008).
[Crossref]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[Crossref]

2006 (2)

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

G. Lévêcque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[Crossref]

2005 (2)

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
[Crossref]

2004 (1)

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[Crossref]

2000 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

1995 (1)

1994 (1)

1993 (1)

1991 (1)

S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. A 8, 770–779 (1991).
[Crossref]

1975 (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[Crossref]

1959 (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

Antoš, R.

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

Argoul, F.

Barber, G. D.

S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
[Crossref]

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

Berguiga, L.

Bernussi, A. A.

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35, 246–252 (2013).
[Crossref]

Brueck, S. R. J.

S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. A 8, 770–779 (1991).
[Crossref]

Bundle, D. R.

V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
[Crossref]

Chateau, N.

Chipman, R. A.

Crabtree, K.

Devender,

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[Crossref]

Dutta, J.

Elezgaray, J.

Emboras, A.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Erten, S.

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
[Crossref]

S. Erten and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves at metal/chiral-sculptured-thin-film interfaces,” Proc. SPIE 8465, 846513 (2012).
[Crossref]

Faryad, M.

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

Fedoryshyn, Y.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Grann, E. B.

Grave de Peralta, L.

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35, 246–252 (2013).
[Crossref]

Haffner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Hafner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Hall, A. S.

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

Heni, W.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Hodgkinson, I.

Hodgkinson, I. J.

I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

Hoessbacher, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Hugonin, J.-P.

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Jaluria, Y.

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Jen, Y.-J.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[Crossref]

Johnson, T. W.

Ju, J. J.

Kanda, V.

V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
[Crossref]

Kawai, M.

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

Kim, J. T.

Kim, M.-S.

Kitov, P.

V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
[Crossref]

Knight, B.

Koch, U.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Koga, H.

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

Kowal, J.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Krasavin, A. V.

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Lakhtakia, A.

C. Rivas, M. E. Solano, R. Rodríguez, P. B. Monk, and A. Lakhtakia, “Asymptotic model for finite-element calculations of diffraction by shallow metallic surface-relief gratings,” J. Opt. Soc. Am. A 34, 68–79 (2017).
[Crossref]

M. V. Shuba and A. Lakhtakia, “Splitting of absorptance peaks in absorbing multilayer backed by a periodically corrugated metallic reflector,” J. Opt. Soc. Am. A 33, 779–784 (2016).
[Crossref]

J. Dutta, S. A. Ramakrishna, and A. Lakhtakia, “Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver,” J. Opt. Soc. Am. A 33, 1697–1704 (2016).
[Crossref]

S. E. Swiontek and A. Lakhtakia, “Influence of silver-nanoparticle layer in a chiral sculptured thin film for surface-multiplasmonic sensing of analytes in aqueous solution,” J. Nanophoton. 10, 033008 (2016).
[Crossref]

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
[Crossref]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[Crossref]

S. Erten and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves at metal/chiral-sculptured-thin-film interfaces,” Proc. SPIE 8465, 846513 (2012).
[Crossref]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[Crossref]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London A 465, 87–107 (2009).
[Crossref]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[Crossref]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[Crossref]

I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[Crossref]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

Lee, M.-H.

Leuthold, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Lévêcque, G.

G. Lévêcque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[Crossref]

Li, L.

Lin, C.-F.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[Crossref]

Liu, L.

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

Ma, P.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Mackay, T. G.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Mallouk, T. E.

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

Martin, O. J. F.

G. Lévêcque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[Crossref]

Mattox, D. M.

D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes, 2003).

Mayer, T. S.

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

McDermott, M. T.

V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Mistrík, J.

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[Crossref]

Moharam, M. G.

Monier, K.

Monk, P. B.

Motyka, M. A.

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[Crossref]

Nagano, M.

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

Nicholls, D. P.

Niegemann, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Oh, S.-H.

Onishi, M.

Park, S.

Park, S. K.

Polo, J. A.

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London A 465, 87–107 (2009).
[Crossref]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Pommet, D. A.

Pulsifer, D. P.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[Crossref]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[Crossref]

Ramakrishna, S. A.

Regan, C. J.

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35, 246–252 (2013).
[Crossref]

Reitich, F.

Rivas, C.

Robbie, K.

Rodríguez, R.

Rokushima, K.

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

Roland, T.

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

See, C. W.

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[Crossref]

Sekhon, J. S.

J. S. Sekhon and S. S. Verma, “Plasmonics: the future wave of communication,” Curr. Sci. India 101, 484–488 (2011).

Shimada, K.

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

Shuba, M. V.

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[Crossref]

Solano, M. E.

Somekh, M. G.

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[Crossref]

Stabler, G.

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[Crossref]

Starzhinskii, V. M.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Swiontek, S. E.

S. E. Swiontek and A. Lakhtakia, “Influence of silver-nanoparticle layer in a chiral sculptured thin film for surface-multiplasmonic sensing of analytes in aqueous solution,” J. Nanophoton. 10, 033008 (2016).
[Crossref]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[Crossref]

Thoms, S.

S. Thoms, “Electron beam lithography,” in Nanofabrication Handbook, S. Cabrini and S. Kawata, eds. (CRC Press, 2012).

Usui-Aoki, K.

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

Verma, S. S.

J. S. Sekhon and S. S. Verma, “Plasmonics: the future wave of communication,” Curr. Sci. India 101, 484–488 (2011).

Višnovský, Š.

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[Crossref]

Wu, Q. h.

Yakubovich, V. A.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Yamaguchi, T.

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Young, N. O.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Yousaf, M.

S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. A 8, 770–779 (1991).
[Crossref]

Zaidi, S. H.

S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. A 8, 770–779 (1991).
[Crossref]

Zayats, A. V.

Zourob, M.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

ACS Photon. (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Am. J. Phys. (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[Crossref]

Anal. Chem. (1)

V. Kanda, P. Kitov, D. R. Bundle, and M. T. McDermott, “Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors,” Anal. Chem. 77, 7497–7504 (2005).
[Crossref]

Appl. Opt. (1)

Curr. Sci. India (1)

J. S. Sekhon and S. S. Verma, “Plasmonics: the future wave of communication,” Curr. Sci. India 101, 484–488 (2011).

Czech. J. Phys. (1)

K. Rokushima, R. Antoš, J. Mistrík, Š. Višňovský, and T. Yamaguchi, “Optics of anisotropic nanostructures,” Czech. J. Phys. 56, 665–764 (2006).
[Crossref]

Electromagnetics (1)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

Electron. Lett. (1)

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21, 4600408 (2015).
[Crossref]

J. Appl. Phys. (1)

G. Lévêcque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[Crossref]

J. Microsc. (1)

G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004).
[Crossref]

J. Nanophoton. (4)

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[Crossref]

L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, “Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating,” J. Nanophoton. 9, 093593 (2015).
[Crossref]

S. E. Swiontek and A. Lakhtakia, “Influence of silver-nanoparticle layer in a chiral sculptured thin film for surface-multiplasmonic sensing of analytes in aqueous solution,” J. Nanophoton. 10, 033008 (2016).
[Crossref]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008).
[Crossref]

J. Opt. Soc. Am. A (10)

M. Onishi, K. Crabtree, and R. A. Chipman, “Formulation of rigorous coupled-wave theory for gratings in bianisotropic media,” J. Opt. Soc. Am. A 28, 1747–1758 (2011).
[Crossref]

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
[Crossref]

N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
[Crossref]

M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[Crossref]

S. Erten, A. Lakhtakia, and G. D. Barber, “Experimental investigation of circular Bragg phenomenon for oblique incidence,” J. Opt. Soc. Am. A 32, 764–770 (2015).
[Crossref]

J. Dutta, S. A. Ramakrishna, and A. Lakhtakia, “Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver,” J. Opt. Soc. Am. A 33, 1697–1704 (2016).
[Crossref]

S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. A 8, 770–779 (1991).
[Crossref]

M. V. Shuba and A. Lakhtakia, “Splitting of absorptance peaks in absorbing multilayer backed by a periodically corrugated metallic reflector,” J. Opt. Soc. Am. A 33, 779–784 (2016).
[Crossref]

D. P. Nicholls, S.-H. Oh, T. W. Johnson, and F. Reitich, “Launching surface plasmon waves via vanishingly small periodic gratings,” J. Opt. Soc. Am. A 33, 276–285 (2016).
[Crossref]

C. Rivas, M. E. Solano, R. Rodríguez, P. B. Monk, and A. Lakhtakia, “Asymptotic model for finite-element calculations of diffraction by shallow metallic surface-relief gratings,” J. Opt. Soc. Am. A 34, 68–79 (2017).
[Crossref]

Nature (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Opt. Express (3)

Proc. R. Soc. London A (1)

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London A 465, 87–107 (2009).
[Crossref]

Proc. SPIE (1)

S. Erten and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves at metal/chiral-sculptured-thin-film interfaces,” Proc. SPIE 8465, 846513 (2012).
[Crossref]

Proteomics (1)

K. Usui-Aoki, K. Shimada, M. Nagano, M. Kawai, and H. Koga, “A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology,” Proteomics 5, 2396–2401 (2005).
[Crossref]

Scanning (1)

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35, 246–252 (2013).
[Crossref]

Sci. Rep. (1)

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[Crossref]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Other (9)

A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes, 2003).

I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

S. Thoms, “Electron beam lithography,” in Nanofabrication Handbook, S. Cabrini and S. Kawata, eds. (CRC Press, 2012).

R. F. Bunshah, ed., Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, 2nd ed. (Noyes, 1994).

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Cross-sectional scanning-electron micrograph of a zinc-selenide chiral STF grown on a silicon substrate.

Fig. 2.
Fig. 2.

Schematic of the canonical boundary-value problem for the propagation of SPP waves guided by the planar interface of a metal and a chiral STF.

Fig. 3.
Fig. 3.

Schematic of the grating-coupled excitation of SPP waves guided by the periodically corrugated interface of a metal and a chiral STF.

Fig. 4.
Fig. 4.

Real and imaginary parts of the calculated relative wavenumbers of SPP waves propagating parallel to ± u x . The constitutive parameters of the metal and the chiral STF are provided at the beginning of Section 2.D.

Fig. 5.
Fig. 5.

Map of the incidence angle θ versus wavelength λ 0 indicating the excitation of an SPP wave in the grating-coupled configuration when L = 306    nm , as predicted by the solution of the canonical boundary-value problem for ψ = 0 ° in Fig. 4. The legend on the right shows the order n of the Floquet harmonic that can be excited as an SPP wave.

Fig. 6.
Fig. 6.

Calculated values of the absorptances A s and A p in the θ λ 0 plane when d 1 = 10 Ω and d 2 d 1 = 20    nm , values of the other geometric and constitutive parameters being provided for the grating-coupled configuration at the beginning of Section 2.D. The bottom panels are the same as the top panels except being overlaid by the data points in Fig. 5.

Fig. 7.
Fig. 7.

Same as Fig. 6, except that d 2 d 1 = 120    nm .

Fig. 8.
Fig. 8.

Top-view SEM image of a gold grating fabricated on a silicon wafer.

Fig. 9.
Fig. 9.

Cross-sectional SEM images of the samples containing (a) 5 period chiral STF and (b) 7 period chiral STF, both grown on simultaneously fabricated gold gratings.

Fig. 10.
Fig. 10.

Measured values of the absorptances A s and A p in the θ λ 0 plane of a sample comprising a chiral STF deposited on a gold grating. The sample contains either (a) a 5-period-thick or (b) a 7-period-thick chiral STF.

Fig. 11.
Fig. 11.

Same as Fig. 10, but high-absorptance bands common to both samples are identified.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

ϵ _ _ ChiSTF ( z , ω ) = S _ _ z ( z ) S _ _ y ε _ _ ref ° ( ω ) S _ _ y 1 S _ _ z 1 ( z ) ,
S _ _ z ( z ) = u z u z + ( u x u x + u y u y ) cos ( π z / Ω ) + h ( u y u x u x u y ) sin ( π z / Ω ) , S _ _ y = u y u y + ( u x u x + u z u z ) cos χ + ( u z u x u x u z ) sin χ , ϵ _ _ ref ° ( ω ) = ϵ a ( ω ) u z u z + ϵ b ( ω ) u x u x + ϵ c ( ω ) u y u y ; }
E ( r ) = [ a p ( α m k 0 u prop + q k 0 u z ) + a s u s ] exp ( i k m r ) , z < 0 ,
H ( r ) = η 0 1 [ a p ϵ m u s + a s ( α m k 0 u prop + q k 0 u z ) ] × exp ( i k m r ) , z < 0 ,
u s = u x sin ψ + u y cos ψ , k m = q u prop α m u z , α m 2 = k 0 2 ϵ m q 2 , }
e ( z ) = E ( r ) exp ( i q u prop r ) , h ( z ) = H ( r ) exp ( i q u prop r ) . }
d d z [ f ( z ) ] = i [ P _ _ ( z ) ] [ f ( z ) ] , z > 0 ,
[ f ( z ) ] = [ u prop e ( z ) u s e ( z ) u prop h ( z ) u s h ( z ) ] T ,
[ f ( z ) ] = [ F _ _ ( z ) ] exp { i z [ Q ˜ _ _ ] } [ f ( 0 + ) ] ,
[ f ( 2 Ω ) ] = [ Q _ _ ] [ f ( 0 + ) ] .
[ Q _ _ ] = exp { i 2 Ω [ Q ˜ _ _ ] } .
σ ˜ m = i ln ( σ m ) 2 Ω , m [ 1 , 4 ] .
[ f ( 0 + ) ] = τ 1 [ t ( 1 ) ] + τ 2 [ t ( 2 ) ] ,
[ Y _ _ ( q , ψ ) ] [ τ 1 τ 2 a s a p ] = [ 0 0 0 0 ] ,
det [ Y _ _ ( q , ψ ) ] = 0
ϵ _ _ rel ( x , z , ω ) = { ϵ _ _ ChiSTF ( z , ω ) , z ( 0 , d 1 ) , ϵ m ( ω ) I _ _ [ ϵ m ( ω ) I _ _ ϵ _ _ ChiSTF ( z , ω ) ] U [ z g ( x ) ] , z ( d 1 , d 2 ) , ϵ m ( ω ) I _ _ , z ( d 2 , d 3 ) ,
U ( σ ) = { 1 , σ 0 , 0 , σ < 0 ,
E inc ( r ) = n Z { [ s n a s ( n ) + p n + a p ( n ) ] × exp [ i ( k x ( n ) x + k z ( n ) z ) ] } , z 0 ,
H inc ( r ) = η 0 1 n Z { [ p n + a s ( n ) s n a p ( n ) ] × exp [ i ( k x ( n ) x + k z ( n ) z ) ] } , z 0 ,
k x ( n ) = k 0 sin θ + 2 π n / L , k z ( n ) = { + k 0 2 ( k x ( n ) ) 2 , k 0 2 > ( k x ( n ) ) 2 , + i ( k x ( n ) ) 2 k 0 2 , k 0 2 < ( k x ( n ) ) 2 , s n = u y , p n ± = k z ( n ) k 0 u x + k x ( n ) k 0 u z . }
E ref ( r ) = n Z { [ s n r s ( n ) + p n r p ( n ) ] × exp [ i ( k x ( n ) x k z ( n ) z ) ] } , z < 0 ,
H ref ( r ) = η 0 1 n Z { [ p n r s ( n ) s n r p ( n ) ] × exp [ i ( k x ( n ) x k z ( n ) z ) ] } , z < 0 .
E t r ( r ) = n Z ( [ s n t s ( n ) + p n + t p ( n ) ] × exp { i [ k x ( n ) x + k z ( n ) ( z d 3 ) ] } ) , z > d 3 ,
H t r ( r ) = η 0 1 n Z ( [ p n + t s ( n ) s n t p ( n ) ] × exp { i [ k x ( n ) x + k z ( n ) ( z d 3 ) ] } ) , z > d 3 .
[ r s ( n ) r p ( n ) ] = [ r s s ( n ) r s p ( n ) r p s ( n ) r p p ( n ) ] · [ a s ( 0 ) a p ( 0 ) ] , n Z ,
[ t s ( n ) t p ( n ) ] = [ t s s ( n ) t s p ( n ) t p s ( n ) t p p ( n ) ] · [ a s ( 0 ) a p ( 0 ) ] , n Z ,
A s = 1 n = N t N t [ R s s ( n ) + R p s ( n ) + T s s ( n ) + T p s ( n ) ]
A p = 1 n = N t N t [ R s p ( n ) + R p p ( n ) + T s p ( n ) + T p p ( n ) ]
ϵ σ ( λ 0 ) = 1 + p σ [ 1 + ( 1 N σ i λ σ λ 0 ) 2 ] 1 , σ { a , b , c } .
g ( x ) = { d 1 , x ( 0 , γ L ) , d 2 , x ( γ L , L ) ,
± Re ( q ) k x ( n ) = k 0 sin θ + n ( 2 π L )
A s = 1 [ R s s ( 0 ) + R p s ( 0 ) ] , A p = 1 [ R p p ( 0 ) + R s p ( 0 ) ] , }

Metrics