Abstract

We study the scattering properties of individual Al0.18Ga0.82As nanocylinders, which support simultaneously electric and magnetic dipole resonances, excited by an integrated point dipole emitter. We show that by controlling the emitter position in the nanocylinder, it is possible to enhance directivity and the decay rate. Our findings reveal remarkable details of the emitter/antenna coupling mechanisms, opening the way to new design strategies for integrated systems used in nanosensing, quantum optics, and metamaterials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles

Brice Rolly, Brian Stout, and Nicolas Bonod
Opt. Express 20(18) 20376-20386 (2012)

All-dielectric optical nanoantennas

Alexander E. Krasnok, Andrey E. Miroshnichenko, Pavel A. Belov, and Yuri S. Kivshar
Opt. Express 20(18) 20599-20604 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription