Abstract

An extremely low loss porous-core fiber with nearly zero dispersion flattened over a wide band of frequency in the terahertz (THz) regime is presented in this paper. A novel structure of hexagonal air holes in both the core and the cladding is introduced to provide an overwhelming reduction in bulk material absorption loss and confinement loss. Numerical analysis shows that an effective material loss as low as 0.0206  cm1 and a very flat dispersion of ±0.16  ps/THz/cm can be obtained from the proposed fiber in the frequency range of 0.98–1.64 THz. Within the whole frequency band, the fiber operates in a single-mode region and shows a variation in total loss of only ±0.01  cm1.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra low-loss hybrid core porous fiber for broadband applications

Md. Saiful Islam, Jakeya Sultana, Javid Atai, Derek Abbott, Sohel Rana, and Mohammad Rakibul Islam
Appl. Opt. 56(4) 1232-1237 (2017)

Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance

Md. Rabiul Hasan, Md. Shamim Anower, Md. Ariful Islam, and S. M. A. Razzak
Appl. Opt. 55(15) 4145-4152 (2016)

Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core

Md. Rabiul Hasan, Md. Ariful Islam, M. S. Anower, and S. M. A. Razzak
Appl. Opt. 55(30) 8441-8447 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
    [Crossref]
  2. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with topas microstructured polymer optical fiber,” Opt. Lett. 32, 460–462 (2007).
    [Crossref]
  3. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
    [Crossref]
  4. K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
    [Crossref]
  5. E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D 39, R301–R310 (2006).
    [Crossref]
  6. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
    [Crossref]
  7. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008).
    [Crossref]
  8. N.-N. Chen, J. Liang, and L.-Y. Ren, “High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt. 52, 5297–5302 (2013).
    [Crossref]
  9. Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
    [Crossref]
  10. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
    [Crossref]
  11. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
    [Crossref]
  12. X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52, 770–774 (2013).
    [Crossref]
  13. M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
    [Crossref]
  14. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
    [Crossref]
  15. S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
    [Crossref]
  16. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
    [Crossref]
  17. S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
    [Crossref]
  18. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
    [Crossref]
  19. T. Ma, A. Markov, L. Wang, and M. Skorobogatiy, “Graded index porous optical fibers-dispersion management in terahertz range,” Opt. Express 23, 7856–7869 (2015).
    [Crossref]
  20. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
    [Crossref]
  21. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
    [Crossref]
  22. S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5, 169–215 (2013).
    [Crossref]
  23. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
    [Crossref]
  24. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
    [Crossref]
  25. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).
    [Crossref]
  26. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
    [Crossref]
  27. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [Crossref]
  28. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35, 2879–2881 (2010).
    [Crossref]
  29. S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photon. Technol. Lett. 25, 1454–1457 (2013).
    [Crossref]
  30. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014).
    [Crossref]
  31. M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
    [Crossref]
  32. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
    [Crossref]
  33. M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core hexagonal lattice terahertz fiber for ultra low loss transmission,” submitted to IEEE J. Quantum Electron..
  34. G. Hasanuzzaman, M. S. Habib, S. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33, 4027–4031 (2015).
    [Crossref]
  35. M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc. 12, 15 (2016).
    [Crossref]
  36. S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
    [Crossref]
  37. T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Förtsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. St.J. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B 28, 193–198 (2011).
    [Crossref]
  38. J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
    [Crossref]
  39. R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: fabrication and characterization,” in Optical Fiber Communications Conference (OFC) (2005), Vol. 3, pp. 1–3.

2016 (2)

M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc. 12, 15 (2016).
[Crossref]

S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
[Crossref]

2015 (3)

2014 (2)

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014).
[Crossref]

M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
[Crossref]

2013 (7)

X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52, 770–774 (2013).
[Crossref]

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5, 169–215 (2013).
[Crossref]

N.-N. Chen, J. Liang, and L.-Y. Ren, “High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt. 52, 5297–5302 (2013).
[Crossref]

J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[Crossref]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
[Crossref]

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photon. Technol. Lett. 25, 1454–1457 (2013).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

2012 (2)

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
[Crossref]

2011 (4)

2010 (1)

2009 (4)

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[Crossref]

S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[Crossref]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[Crossref]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[Crossref]

2008 (5)

2007 (1)

2006 (1)

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D 39, R301–R310 (2006).
[Crossref]

2004 (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

2003 (1)

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[Crossref]

2002 (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

2001 (2)

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[Crossref]

Abbott, D.

Adam, A. J.

Afshar, S.

Agrawal, A.

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

Ahmad, B.

S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
[Crossref]

Ahmed, N.

S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
[Crossref]

Ali, S.

S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
[Crossref]

Aljunid, S.

S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
[Crossref]

Atakaramians, S.

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014).
[Crossref]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35, 2879–2881 (2010).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[Crossref]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with topas microstructured polymer optical fiber,” Opt. Lett. 32, 460–462 (2007).
[Crossref]

Banzer, P.

Bao, H.

Bhatia, S. N.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Bise, R. T.

R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: fabrication and characterization,” in Optical Fiber Communications Conference (OFC) (2005), Vol. 3, pp. 1–3.

Brenn, A.

Celanese, H.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[Crossref]

Chen, D.

Chen, M.-Y.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

Chen, N.

J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[Crossref]

Chen, N.-N.

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[Crossref]

Ebendorff-Heidepriem, H.

Elser, D.

Emiliyanov, G.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
[Crossref]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with topas microstructured polymer optical fiber,” Opt. Lett. 32, 460–462 (2007).
[Crossref]

Euser, T. G.

Faisal, M.

M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core hexagonal lattice terahertz fiber for ultra low loss transmission,” submitted to IEEE J. Quantum Electron..

Federici, J.

Fischer, B. M.

Förtsch, M.

Fukunaga, K.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

Gabriel, C.

Giles, R. C.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Grattan, K.

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

Habib, M. S.

G. Hasanuzzaman, M. S. Habib, S. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33, 4027–4031 (2015).
[Crossref]

M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
[Crossref]

Han, P.

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

Hasan, M. I.

M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
[Crossref]

Hasan, M. R.

M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc. 12, 15 (2016).
[Crossref]

Hasanuzzaman, G.

G. Hasanuzzaman, M. S. Habib, S. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33, 4027–4031 (2015).
[Crossref]

M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
[Crossref]

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

Hoiby, P. E.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
[Crossref]

Hosako, I.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

Hossain, M. A.

Hu, G.

Islam, M. A.

M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc. 12, 15 (2016).
[Crossref]

Islam, M. S.

M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core hexagonal lattice terahertz fiber for ultra low loss transmission,” submitted to IEEE J. Quantum Electron..

Jensen, J. B.

Jepsen, P. U.

Jiang, X.

Jin, X.

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photon. Technol. Lett. 25, 1454–1457 (2013).
[Crossref]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

Joly, N. Y.

Kaijage, S. F.

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photon. Technol. Lett. 25, 1454–1457 (2013).
[Crossref]

Kalli, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

Kejalakshmy, N.

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

Kersting, R.

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

Khanarian, G.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[Crossref]

Kjær, E. M.

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Kono, S.

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

Leuchs, G.

Li, Y. Y.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Liang, J.

J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[Crossref]

N.-N. Chen, J. Liang, and L.-Y. Ren, “High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt. 52, 5297–5302 (2013).
[Crossref]

Lim, H. C.

Lindvold, L.

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Ma, T.

Markov, A.

Marquardt, C.

Mickan, S. P.

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[Crossref]

Möller, L.

Monro, T. M.

Nagel, M.

Namihira, Y.

Nielsen, K.

Oda, N.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Ouyang, Z.

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photon. Technol. Lett. 25, 1454–1457 (2013).
[Crossref]

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
[Crossref]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with topas microstructured polymer optical fiber,” Opt. Lett. 32, 460–462 (2007).
[Crossref]

Pickwell, E.

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D 39, R301–R310 (2006).
[Crossref]

Planken, P. C.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Rahman, B.

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

Rasmussen, H. K.

Razzak, S. A.

G. Hasanuzzaman, M. S. Habib, S. A. Razzak, M. A. Hossain, and Y. Namihira, “Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33, 4027–4031 (2015).
[Crossref]

M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
[Crossref]

Razzak, S. M. A.

M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core hexagonal lattice terahertz fiber for ultra low loss transmission,” submitted to IEEE J. Quantum Electron..

Ren, L.

J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[Crossref]

Ren, L.-Y.

Rifat, A. A.

M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc. 12, 15 (2016).
[Crossref]

Sailor, M. J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Scharrer, M.

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Schmidt, M. A.

Sekine, N.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

Sinyukov, A.

Skorobogatiy, M.

St.J. Russell, P.

Stefani, A.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

Sudou, T.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Tani, M.

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

Trevor, D. J.

R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: fabrication and characterization,” in Optical Fiber Communications Conference (OFC) (2005), Vol. 3, pp. 1–3.

Usami, M.

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

Uthman, M.

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

Vincetti, L.

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[Crossref]

Wallace, V.

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D 39, R301–R310 (2006).
[Crossref]

Wang, H.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

Wang, L.

Webb, D. J.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

Xie, C.

Yang, J.-C.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

Yao, H.-B.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

Yoneyama, H.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

Yuan, W.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

Zang, L. Y.

Zhang, X.-C.

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[Crossref]

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

Zhang, Y.-K.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

Zhou, C.

J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[Crossref]

Zhu, Y.-F.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

Electron. Lett. (2)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in topas cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

S. Ali, N. Ahmed, S. Aljunid, and B. Ahmad, “Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion,” Electron. Lett. 52, 863–865 (2016).
[Crossref]

IEEE Photon. J. (2)

M. Uthman, B. Rahman, N. Kejalakshmy, A. Agrawal, and K. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photon. J. 4, 2315–2325 (2012).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photon. J. 5, 7101410 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, and M. S. Habib, “Ultra-low material loss and dispersion flattened fiber for THz transmission,” IEEE Photon. Technol. Lett. 26, 2372–2375 (2014).
[Crossref]

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz wave guiding,” IEEE Photon. Technol. Lett. 25, 1454–1457 (2013).
[Crossref]

Int. J. High Speed Electron. Syst. (1)

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[Crossref]

J. Appl. Phys. (1)

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[Crossref]

J. Eur. Opt. Soc. (2)

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027(2008).
[Crossref]

M. R. Hasan, M. A. Islam, and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” J. Eur. Opt. Soc. 12, 15 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D 39, R301–R310 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[Crossref]

Nat. Mater. (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Opt. Commun. (2)

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[Crossref]

J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[Crossref]

Opt. Eng. (1)

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[Crossref]

Opt. Express (8)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[Crossref]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[Crossref]

S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014).
[Crossref]

T. Ma, A. Markov, L. Wang, and M. Skorobogatiy, “Graded index porous optical fibers-dispersion management in terahertz range,” Opt. Express 23, 7856–7869 (2015).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive topas polymer fiber Bragg grating sensor,” Opt. Express 19, 19731–19739 (2011).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
[Crossref]

Opt. Fiber Technol. (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[Crossref]

Opt. Lett. (4)

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Sensors (1)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with topas microstructured polymer optical fibers,” Sensors 13, 3242–3251 (2013).
[Crossref]

Other (2)

M. S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core hexagonal lattice terahertz fiber for ultra low loss transmission,” submitted to IEEE J. Quantum Electron..

R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: fabrication and characterization,” in Optical Fiber Communications Conference (OFC) (2005), Vol. 3, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Cross section of the proposed PCF with hexagonal lattice air holes at both core and cladding.
Fig. 2.
Fig. 2. Mode field confinement of the proposed PCF for different core porosities: (a) 70%, (b) 75%, (c) 80%, (d) 85% at f=1  THz.
Fig. 3.
Fig. 3. EML and confinement loss as a function of core porosity for different core diameters at f=1  THz and Λs=6  μm.
Fig. 4.
Fig. 4. EML and confinement loss as function of core diameter for 75%, 80%, and 85% porosity at f=1  THz and Λs=6  μm.
Fig. 5.
Fig. 5. Total loss as function of (a) core porosity and (b) core diameter at f=1  THz and Λs=6  μm.
Fig. 6.
Fig. 6. (a) Total loss for different strut widths and (b) total loss for different number of cladding rings.
Fig. 7.
Fig. 7. Effective modal area and bending loss as a function of core diameter. Bending radius R is taken as 1 cm.
Fig. 8.
Fig. 8. Effective modal area and bending loss as a function of frequency. Bending radius R is taken as 1 cm.
Fig. 9.
Fig. 9. Fraction of power in the material, air holes in core, and air holes in cladding for 80% core porosity (solid lines) and 85% core porosity (dashed lines) at f=1  THz and Λs=6  μm.
Fig. 10.
Fig. 10. Fraction of power in the material, air holes in core, and air holes in cladding for 80% core porosity (solid lines) and 85% core porosity (dashed lines) at Dcore=450  μm and Λs=6  μm.
Fig. 11.
Fig. 11. V-parameter as a function of (a) core diameter, f is fixed at 1 THz, and (b) frequency, Dcore is fixed at 450 μm.
Fig. 12.
Fig. 12. (a) Total loss for Dcore=450  μm, porosity=85%, strut width=6  μm. (b) Impact of core diameter on β2, porosity is fixed at 85%. (c) Impact of porosity on β2 for Dcore=450  μm.

Tables (1)

Tables Icon

Table 1. Comparison with Reported Results

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

αeff=(ε0/μ0)1/2Amatnαmat|E|2dA2AllSzdA=αmatη,
Lc=(4πfc)Im(neff),
Aeff=[I(r)rdr]2[I2(r)rdr]1,
αBL18(2π3)1βAeffF[23R(β2βcl2)2/3β2],
Fraction of Power=xSzdAAllSzdA,
V=2πrfcnco2ncl22.405,
β2=2cdneffdω+ωcd2neffdω2,

Metrics