Abstract

We computationally investigate the excitation of subradiant modes and Fano resonances of arrays of simple antenna elements with subwavelength dimensions. We show that periodic arrangements of dipoles on a flat surface provide a highly flexible approach for developing a range of metasurfaces with high sensitivity to both the wavelength of the incident radiation and angle of incidence. This provides a platform for the development of a range of metasurfaces with a wavelength-tunable sensitivity to phase gradients in an incident field.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  4. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
    [Crossref]
  5. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
    [Crossref]
  6. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
    [Crossref]
  7. D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
    [Crossref]
  8. T. J. Davis, D. Gomez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
    [Crossref]
  9. T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic ‘ac Wheatstone bridge’ circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009).
    [Crossref]
  10. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
    [Crossref]
  11. T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
    [Crossref]
  12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [Crossref]
  13. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  14. R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces–a review,” Proc. IEEE 76, 1593–1615 (1988).
    [Crossref]
  15. T.-K. Wu, “Frequency selective surfaces,” in Encyclopedia of RF and Microwave Engineering (Wiley, 2005).
  16. E. Eftekhari, D. Gómez, and T. Davis, “Measuring subwavelength phase differences with a plasmonic circuit—an example of nanoscale optical signal processing,” Opt. Lett. 39, 2994–2997 (2014).
    [Crossref]
  17. Y. Hwang and T. J. Davis, “Optical metasurfaces for subwavelength difference operations,” Appl. Phys. Lett. 109, 181101 (2016).
    [Crossref]
  18. V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
    [Crossref]
  19. T. Wei and S. Zhongxiang, “Scattering by a two-dimensional periodic array of multiple plates,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4533–4536.
  20. S. H. Mousavi, A. B. Khanikaev, and G. Shvets, “Optical properties of Fano-resonant metallic metasurfaces on a substrate,” Phys. Rev. B 85, 155429 (2012).
    [Crossref]
  21. C. Chao-Chun, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Trans. Antennas Propag. 18, 660–665 (1970).
    [Crossref]
  22. C.-C. Chen, “Transmission of microwaves through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech. 21, 1–6 (1973).
    [Crossref]
  23. C.-C. Chen, “Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes,” IEEE Trans. Microw. Theory Tech. 19, 475–481 (1971).
    [Crossref]
  24. D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28, 3498–3510 (1989).
    [Crossref]
  25. J. Montgomery, “Scattering by an infinite periodic array of thin conductors on a dielectric sheet,” IEEE Trans. Antennas Propag. 23, 70–75 (1975).
    [Crossref]
  26. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24, 217–220 (1985).
    [Crossref]
  27. R. C. Compton, “Approximation techniques for planar periodic structures,” IEEE Trans. Microw. Theory Tech. 33, 1083–1088 (1985).
    [Crossref]
  28. Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
    [Crossref]
  29. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref]
  30. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
    [Crossref]

2016 (2)

Y. Hwang and T. J. Davis, “Optical metasurfaces for subwavelength difference operations,” Appl. Phys. Lett. 109, 181101 (2016).
[Crossref]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
[Crossref]

2015 (1)

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

2014 (3)

E. Eftekhari, D. Gómez, and T. Davis, “Measuring subwavelength phase differences with a plasmonic circuit—an example of nanoscale optical signal processing,” Opt. Lett. 39, 2994–2997 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

2013 (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

2012 (3)

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
[Crossref]

S. H. Mousavi, A. B. Khanikaev, and G. Shvets, “Optical properties of Fano-resonant metallic metasurfaces on a substrate,” Phys. Rev. B 85, 155429 (2012).
[Crossref]

D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
[Crossref]

2011 (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

2010 (1)

T. J. Davis, D. Gomez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[Crossref]

2009 (4)

T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic ‘ac Wheatstone bridge’ circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[Crossref]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

2007 (1)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

1989 (1)

1988 (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces–a review,” Proc. IEEE 76, 1593–1615 (1988).
[Crossref]

1985 (2)

L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24, 217–220 (1985).
[Crossref]

R. C. Compton, “Approximation techniques for planar periodic structures,” IEEE Trans. Microw. Theory Tech. 33, 1083–1088 (1985).
[Crossref]

1975 (1)

J. Montgomery, “Scattering by an infinite periodic array of thin conductors on a dielectric sheet,” IEEE Trans. Antennas Propag. 23, 70–75 (1975).
[Crossref]

1973 (1)

C.-C. Chen, “Transmission of microwaves through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech. 21, 1–6 (1973).
[Crossref]

1971 (1)

C.-C. Chen, “Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes,” IEEE Trans. Microw. Theory Tech. 19, 475–481 (1971).
[Crossref]

1970 (1)

C. Chao-Chun, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Trans. Antennas Propag. 18, 660–665 (1970).
[Crossref]

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Altug, H.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Alu, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Castaldi, G.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

Chan, C. H.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces–a review,” Proc. IEEE 76, 1593–1615 (1988).
[Crossref]

Chao-Chun, C.

C. Chao-Chun, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Trans. Antennas Propag. 18, 660–665 (1970).
[Crossref]

Chen, C. H.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Chen, C.-C.

C.-C. Chen, “Transmission of microwaves through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech. 21, 1–6 (1973).
[Crossref]

C.-C. Chen, “Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes,” IEEE Trans. Microw. Theory Tech. 19, 475–481 (1971).
[Crossref]

Chu, M. W.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Compton, R. C.

L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24, 217–220 (1985).
[Crossref]

R. C. Compton, “Approximation techniques for planar periodic structures,” IEEE Trans. Microw. Theory Tech. 33, 1083–1088 (1985).
[Crossref]

Cwik, T.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces–a review,” Proc. IEEE 76, 1593–1615 (1988).
[Crossref]

Davis, T.

Davis, T. J.

Y. Hwang and T. J. Davis, “Optical metasurfaces for subwavelength difference operations,” Appl. Phys. Lett. 109, 181101 (2016).
[Crossref]

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
[Crossref]

D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
[Crossref]

T. J. Davis, D. Gomez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic ‘ac Wheatstone bridge’ circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[Crossref]

Dawes, D. H.

Deng, J. P.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Deng, Z.-L.

Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
[Crossref]

Eftekhari, E.

Engheta, N.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Fu, T.

Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
[Crossref]

Galdi, V.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

García de Abajo, F. J.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Giessen, H.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Gomez, D.

T. J. Davis, D. Gomez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[Crossref]

Gomez, D. E.

D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic ‘ac Wheatstone bridge’ circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[Crossref]

Gómez, D.

Hentschel, M.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Hwang, Y.

Y. Hwang and T. J. Davis, “Optical metasurfaces for subwavelength difference operations,” Appl. Phys. Lett. 109, 181101 (2016).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Kauranen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Khanikaev, A. B.

S. H. Mousavi, A. B. Khanikaev, and G. Shvets, “Optical properties of Fano-resonant metallic metasurfaces on a substrate,” Phys. Rev. B 85, 155429 (2012).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Liu, N.

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

McPhedran, R. C.

Mittra, R.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces–a review,” Proc. IEEE 76, 1593–1615 (1988).
[Crossref]

Montgomery, J.

J. Montgomery, “Scattering by an infinite periodic array of thin conductors on a dielectric sheet,” IEEE Trans. Antennas Propag. 23, 70–75 (1975).
[Crossref]

Monticone, F.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

Mou, C. Y.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Mousavi, S. H.

S. H. Mousavi, A. B. Khanikaev, and G. Shvets, “Optical properties of Fano-resonant metallic metasurfaces on a substrate,” Phys. Rev. B 85, 155429 (2012).
[Crossref]

Munk, B.

B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

Myroshnychenko, V.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Ouyang, Z.

Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
[Crossref]

Papasimakis, N.

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Perino, M.

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Roberts, A.

D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Shvets, G.

S. H. Mousavi, A. B. Khanikaev, and G. Shvets, “Optical properties of Fano-resonant metallic metasurfaces on a substrate,” Phys. Rev. B 85, 155429 (2012).
[Crossref]

Silva, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Vernon, K. C.

D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
[Crossref]

T. J. Davis, D. Gomez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic ‘ac Wheatstone bridge’ circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[Crossref]

Wallauer, J.

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Walther, M.

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Wang, G.

Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Wei, T.

T. Wei and S. Zhongxiang, “Scattering by a two-dimensional periodic array of multiple plates,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4533–4536.

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Whitbourn, L. B.

Wu, T.-K.

T.-K. Wu, “Frequency selective surfaces,” in Encyclopedia of RF and Microwave Engineering (Wiley, 2005).

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Zhongxiang, S.

T. Wei and S. Zhongxiang, “Scattering by a two-dimensional periodic array of multiple plates,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4533–4536.

ACS Nano (1)

T. J. Davis, M. Hentschel, N. Liu, and H. Giessen, “Analytical model of the three-dimensional plasmonic ruler,” ACS Nano 6, 1291–1298 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z.-L. Deng, T. Fu, Z. Ouyang, and G. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108, 081109 (2016).
[Crossref]

Y. Hwang and T. J. Davis, “Optical metasurfaces for subwavelength difference operations,” Appl. Phys. Lett. 109, 181101 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (2)

J. Montgomery, “Scattering by an infinite periodic array of thin conductors on a dielectric sheet,” IEEE Trans. Antennas Propag. 23, 70–75 (1975).
[Crossref]

C. Chao-Chun, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Trans. Antennas Propag. 18, 660–665 (1970).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

C.-C. Chen, “Transmission of microwaves through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech. 21, 1–6 (1973).
[Crossref]

C.-C. Chen, “Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes,” IEEE Trans. Microw. Theory Tech. 19, 475–481 (1971).
[Crossref]

R. C. Compton, “Approximation techniques for planar periodic structures,” IEEE Trans. Microw. Theory Tech. 33, 1083–1088 (1985).
[Crossref]

J. Appl. Phys. (1)

T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic ‘ac Wheatstone bridge’ circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009).
[Crossref]

Light Sci. Appl. (1)

V. A. Fedotov, J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, “Wavevector selective metasurfaces and tunnel vision filters,” Light Sci. Appl. 4, e306 (2015).
[Crossref]

Nano Lett. (3)

T. J. Davis, D. Gomez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[Crossref]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (3)

D. E. Gomez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B 86, 035411 (2012).
[Crossref]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[Crossref]

S. H. Mousavi, A. B. Khanikaev, and G. Shvets, “Optical properties of Fano-resonant metallic metasurfaces on a substrate,” Phys. Rev. B 85, 155429 (2012).
[Crossref]

Phys. Rev. Lett. (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Proc. IEEE (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces–a review,” Proc. IEEE 76, 1593–1615 (1988).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref]

Science (3)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).
[Crossref]

Other (4)

B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

T.-K. Wu, “Frequency selective surfaces,” in Encyclopedia of RF and Microwave Engineering (Wiley, 2005).

T. Wei and S. Zhongxiang, “Scattering by a two-dimensional periodic array of multiple plates,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4533–4536.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Surface under consideration is an infinite square array (a) of period d with unit cells composed of several dipoles of length a and width b. Specific unit cells considered here comprise (b) three identical parallel wires with distances between their centers given by s, (c) three wires arranged in a symmetric triangular configuration with the distance from the center of the wire to the geometric center of the ensemble given by s, and (d) a dolmen structure.

Fig. 2.
Fig. 2.

Calculated reflection spectra from an array of parallel trimers of identical antennas of length 0.7d and width 0.02d that are separated by a distance s of 0.05d. Figure (a) shows the reflectance at normal incidence and (b) shows the magnitude (solid lines) and phase (dotted lines) of the currents on each of the wires when the incident polarization is parallel to the wires. Figures (c) and (d) show the same results for 30° incidence for TE polarization. The results of the same calculations for a single dipole are also included in (a) and (c) for comparison, and the insets in (b) and (d) show the direction of the zero-phase direction of the current. The reflectance as a function of wavelength and angle of incidence for TE polarization is shown in (e), and (f) shows the reflectance as a function of wire separation for a fixed angle of incidence of 30°.

Fig. 3.
Fig. 3.

Reflection from an array of identical wires with length a of 0.4d in a triangular configuration with a distance from the center of each wire to the centroid with the arrangement s of 0.25d. Figures (a) and (c) show the reflectance and (b) and (d) show the amplitude (solid line) and phase (dashed line) of the current on each wire (a) and (b) at normal incidence and (c) and (d) at an angle of incidence of 30°, assuming TE polarization and incident polarization parallel to one of the wires and the side of the unit cell.

Fig. 4.
Fig. 4.

Reflection from an array of trimers of three identical wires arranged, as shown in Fig. 1(d), with length a of 0.7d and a distance between the upper and lower wires of 0.68d. The gap δ is fixed at 0.1d. Figures (a) and (b) show the reflectance and (c) and (d) show the amplitude and phase of the current on each wire (a) and (c) at normal incidence and (b) and (d) at an angle of incidence of 30°, assuming s polarization and incident polarization parallel to one of the wires and the side of the unit cell. The reflectance spectrum of the cross-polarized (y) component of the transmitted power as a function of angle of incidence is shown in (e), and the average cross-polarized intensity transmitted between wavelengths of 1.5d and 1.7d is plotted in (f).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ψm(xT)={2abcos[π(xTxTm)·α^/a]α^on dipole,0elsewhere.
K(xT)=mBmΨm(xT),
mQmMBm=DM,
QmM=12rpqZrpqCrpqmCpqrM*,
DM=2rEr000C00rM*.
Erpq=Zrpq2mBmCrpqm.

Metrics