Abstract

Through directly manipulating spoof plasmonic particles, electronically switchable and tunable bandpass filters have been proposed and experimentally demonstrated in the microwave frequency. The propagation of spoof localized surface plasmons (LSPs) can be controlled by use of double slits in a corrugated ring. The passbands of the filter can be switched on and off by mounting Schottky barrier diodes across the slits. The frequency spectrum of the passbands can be electronically tunable by adjusting the applied bias voltage across the varactor diode. Both simulated and measured results demonstrate dynamic transmission of spoof LSPs in bandpass filters in microwave frequencies. Such electronically controlled devices could find many applications in plasmonic integrated functional circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable Fano-type resonance of an asymmetric metal wire pair

Quanhong Fu, Fuli Zhang, Yuancheng Fan, Xuan He, Tong Qiao, and Botao Kong
Opt. Express 24(11) 11708-11715 (2016)

Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface

Shuo Liu, He-Xiu Xu, Hao Chi Zhang, and Tie Jun Cui
Opt. Express 22(11) 13403-13417 (2014)

Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons

Bingzheng Xu, Zhuo Li, Liangliang Liu, Jia Xu, Chen Chen, and Changqing Gu
J. Opt. Soc. Am. B 33(7) 1388-1391 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
    [Crossref]
  3. P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  4. W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
    [Crossref]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  6. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
    [Crossref]
  7. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
  8. A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
    [Crossref]
  9. P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
    [Crossref]
  10. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8, 137–145 (2014).
    [Crossref]
  11. F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
    [Crossref]
  12. Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
    [Crossref]
  13. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22, 13940–13950 (2014).
    [Crossref]
  14. B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, P. P. Ning, X. L. Chen, and C. Q. Gu, “Tunable band-notched coplanar waveguide based on localized spoof surface plasmons,” Opt. Lett. 40, 4683–4686 (2015).
    [Crossref]
  15. Z. Gao, F. Gao, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41, 2181–2184 (2016).
    [Crossref]
  16. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  17. A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
    [Crossref]
  18. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
    [Crossref]
  19. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [Crossref]
  20. J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
    [Crossref]
  21. L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
    [Crossref]
  22. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref]
  23. T. S. Kasiriga, Y. N. Erlas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95, 214102 (2009).
    [Crossref]
  24. G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc. IEEE 103, 1034–1056 (2015).
    [Crossref]
  25. H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
    [Crossref]
  26. J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
    [Crossref]
  27. B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23, 21434–21442 (2015).
    [Crossref]

2016 (4)

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

Z. Gao, F. Gao, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41, 2181–2184 (2016).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

2015 (5)

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23, 21434–21442 (2015).
[Crossref]

G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc. IEEE 103, 1034–1056 (2015).
[Crossref]

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, P. P. Ning, X. L. Chen, and C. Q. Gu, “Tunable band-notched coplanar waveguide based on localized spoof surface plasmons,” Opt. Lett. 40, 4683–4686 (2015).
[Crossref]

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

2014 (3)

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22, 13940–13950 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8, 137–145 (2014).
[Crossref]

2013 (3)

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

2012 (2)

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

2011 (3)

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

2010 (1)

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

2009 (2)

W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

T. S. Kasiriga, Y. N. Erlas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95, 214102 (2009).
[Crossref]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2005 (1)

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Azad, A. K.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Bayindir, M.

T. S. Kasiriga, Y. N. Erlas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95, 214102 (2009).
[Crossref]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

Boardman, A. D.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Camargo, P. H. C.

W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Chen, C.

Chen, H. T.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Chen, L. H.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Chen, X. L.

Cuerda, J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

Cui, T. J.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22, 13940–13950 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8, 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Erlas, Y. N.

T. S. Kasiriga, Y. N. Erlas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95, 214102 (2009).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[Crossref]

Fernández-Domínguez, A. I.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

Gao, F.

Z. Gao, F. Gao, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41, 2181–2184 (2016).
[Crossref]

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

Gao, Z.

Z. Gao, F. Gao, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, “Localized spoof surface plasmons in textured open metal surfaces,” Opt. Lett. 41, 2181–2184 (2016).
[Crossref]

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

García-Vidal, F. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

Grimalsky, V. V.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Gu, C. Q.

Guo, J.

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Huidobro, P. A.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[Crossref]

Jia, Q. X.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Kang, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Kasiriga, T. S.

T. S. Kasiriga, Y. N. Erlas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95, 214102 (2009).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Koshevaya, S. V.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Lapine, M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Li, L. M.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Li, W. Y.

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Li, Z.

Liao, Z.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22, 13940–13950 (2014).
[Crossref]

Litchinitser, N. M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Liu, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Liu, L. L.

Liu, S.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Lu, X. M.

W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Luo, Y.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).

Maier, S. A.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

Malnev, V. N.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Martin, O. J.

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Martín-Moreno, L.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

Massa, A.

G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc. IEEE 103, 1034–1056 (2015).
[Crossref]

Mayer, T. S.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Moreno, E.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Ning, P. P.

Noginov, M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

O’Hara, J. F.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Oliveri, G.

G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc. IEEE 103, 1034–1056 (2015).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Pan, B. C.

Pendry, J. B.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

Plum, E.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Pors, A.

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

Qian, C.

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

Rapoport, Y. G.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shalaev, V. M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Shen, X. P.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8, 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

Shi, X.

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Singh, R.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).

Tang, W. X.

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

Taylor, A. J.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Trugman, S. A.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Werne, D. H.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Werner, D. H.

G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc. IEEE 103, 1034–1056 (2015).
[Crossref]

Xia, Y. N.

W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Xiao, Q. X.

Xu, B. Z.

Xu, H. Y.

Xu, J.

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, P. P. Ning, X. L. Chen, and C. Q. Gu, “Tunable band-notched coplanar waveguide based on localized spoof surface plasmons,” Opt. Lett. 40, 4683–4686 (2015).
[Crossref]

Yang, B. J.

Yang, H.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Yang, Z.

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

Zhang, B.

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

Zhang, B. L.

Zhang, H. C.

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Zhang, J. F.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Zhang, J. J.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).

Zhang, Y.

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

Zhang, Y. M.

Zhao, J.

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22, 13940–13950 (2014).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zheludev, N. I.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Zhou, Y. J.

ACS Photon. (1)

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogenous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photon. 3, 1768–1775 (2016).
[Crossref]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[Crossref]

Appl. Phys. Lett. (2)

T. S. Kasiriga, Y. N. Erlas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95, 214102 (2009).
[Crossref]

J. Xu, H. C. Zhang, W. X. Tang, J. Guo, C. Qian, and W. Y. Li, “Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles,” Appl. Phys. Lett. 108, 191906 (2016).
[Crossref]

Laser Photon. Rev. (5)

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8, 137–145 (2014).
[Crossref]

F. Gao, Z. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photon. Rev. 9, 571–576 (2015).
[Crossref]

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev. 5, 287–307 (2011).
[Crossref]

Nano Lett. (1)

W. Y. Li, P. H. C. Camargo, X. M. Lu, and Y. N. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Nat. Commun. (1)

L. Liu, L. Kang, T. S. Mayer, and D. H. Werne, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Nat. Photonics (1)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Phys. Rev. X (1)

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
[Crossref]

Proc. IEEE (1)

G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc. IEEE 103, 1034–1056 (2015).
[Crossref]

Science (2)

P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[Crossref]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of structures (a) A and (b) B. (c) Reflection coefficients and (d) transmission coefficients of the two structures.

Fig. 2.
Fig. 2.

Two-dimensional electric field distributions on the xoy plane 2 mm above structures (a) A and (b) B.

Fig. 3.
Fig. 3.

(a) Simulated and (b) measured scattering parameters of structure C when the diode is ON. (c) Simulated and (d) measured 2D electric field distributions on the xoy plane 2 mm above structure C when the diode is ON.

Fig. 4.
Fig. 4.

(a) Simulated and (b) measured S parameters of structure C when the diode is OFF. (c) Simulated and (d) measured 2D electric field distributions on the xoy plane 2 mm above structure C when the diode is OFF.

Fig. 5.
Fig. 5.

(a) Simulated and (b) measured reflection coefficients of structure D for different Cj (bias voltages) when the SBD diode is OFF. The inset in (b) is the fabricated sample loaded with a varactor diode (SMV 1405-079LF) and a SBD diode (MACOM 1317). (c) Simulated and (d) measured transmission coefficients of structure D. (e) Simulated and (f) measured 2D electric field distributions on the xoy plane 2 mm above the structure D.

Metrics