Abstract

Infrared absorbers are essential structures in the design of thermal emitters and thermal infrared imagers. In this study, we propose simple topologies of wideband metamaterial absorbers operating in the long-wave infrared or in the mid-wave infrared (MWIR) wavelengths of the electromagnetic spectrum where the atmosphere shows transparent behavior. Suggested metamaterial absorbers are mostly thin structures that consist of three functional layers from top to bottom: a periodically patterned metal layer, a planar dielectric layer, and a ground metal layer. The pattern of the top metal layer is four-fold symmetric to guarantee the polarization insensitivity of the absorber under normal incidence of light. In addition, a geometrically simple metamaterial pattern is preferred to facilitate the process of lithography. As titanium is known to be a high-loss metal, it is deliberately used at the top layer of the absorber to increase the overall absorption bandwidth. Highly satisfactory absorber results, such as almost perfect absorption and super-octave band operation are demonstrated, especially in the MWIR region. As oxidation of the top titanium layer may cause performance degradation in long-term use, a design modification is also suggested where a very thin protective coating layer is applied over the titanium metasurface.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband long-wavelength infrared metamaterial absorber based on a double-layer metasurface structure

Kadir Üstün and Gönül Turhan-Sayan
J. Opt. Soc. Am. B 34(2) 456-462 (2017)

Dual band sensitivity enhancements of a VOx microbolometer array using a patterned gold black absorber

Evan M. Smith, Deep Panjwani, James Ginn, Andrew P. Warren, Christopher Long, Pedro Figuieredo, Christian Smith, Janardan Nath, Joshua Perlstein, Nick Walter, Carol Hirschmugl, Robert E. Peale, and David Shelton
Appl. Opt. 55(8) 2071-2078 (2016)

Polarization-independent almost-perfect absorber controlled from narrowband to broadband

Junming Chen, Yunxia Jin, Peng Chen, Yao Shan, Jiao Xu, Fanyu Kong, and Jianda Shao
Opt. Express 25(12) 13916-13922 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39, 3185–3188 (2014).
    [Crossref]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  3. M. C. E. Huber, A. Pauluhn, and J. G. Timothy, Observing Photons in Space (Springer, 2013).
  4. M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
    [Crossref]
  5. L. Zhu, A. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. USA 112, 12282–12287 (2015).
    [Crossref]
  6. W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
    [Crossref]
  7. W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
    [Crossref]
  8. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  9. X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref]
  10. X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref]
  11. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
    [Crossref]
  12. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
    [Crossref]
  13. H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
    [Crossref]
  14. B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
    [Crossref]
  15. Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref]
  16. J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
    [Crossref]
  17. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
    [Crossref]
  18. F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
    [Crossref]
  19. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
    [Crossref]
  20. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
    [Crossref]
  21. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
    [Crossref]
  22. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
    [Crossref]
  23. Y. Zhong, Y. Lai, M. Tu, B. Chen, S. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
    [Crossref]
  24. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
    [Crossref]
  25. K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
    [Crossref]
  26. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
    [Crossref]
  27. Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
    [Crossref]
  28. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
    [Crossref]
  29. L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
    [Crossref]
  30. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
    [Crossref]
  31. M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
    [Crossref]
  32. S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
    [Crossref]
  33. J. Kraus and R. Marhefka, Antennas for All Applications (McGraw-Hill, 2002).
  34. J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
    [Crossref]
  35. A. Rakić, A. Djurišić, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  36. M. Ordal, R. Bell, R. Alexander, L. Newquist, and M. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988).
    [Crossref]
  37. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [Crossref]
  38. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798 (2012).
    [Crossref]
  39. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  40. Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
    [Crossref]
  41. “CST-—Computer Simulation Technology,” 2016, http://www.cst.com .
  42. J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
    [Crossref]
  43. K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
    [Crossref]
  44. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
    [Crossref]
  45. K. Üstün and G. Turhan-Sayan, “Ultra-broadband long-wavelength infrared metamaterial absorber based on a double-layer metasurface structure,” J. Opt. Soc. Am. B 34, 456–462 (2017).
    [Crossref]
  46. T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
    [Crossref]

2017 (1)

2016 (7)

Y. Zhong, Y. Lai, M. Tu, B. Chen, S. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
[Crossref]

M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
[Crossref]

2015 (6)

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

L. Zhu, A. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. USA 112, 12282–12287 (2015).
[Crossref]

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

2014 (8)

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
[Crossref]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39, 3185–3188 (2014).
[Crossref]

2013 (3)

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
[Crossref]

2012 (3)

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798 (2012).
[Crossref]

2011 (1)

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

2009 (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

2008 (3)

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[Crossref]

2006 (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
[Crossref]

2002 (1)

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

1998 (2)

A. Rakić, A. Djurišić, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

1988 (1)

1980 (1)

H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Abdollahramezani, S.

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

Adomanis, B.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Aleksandrova, A.

Alexander, R.

Almasri, M.

T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
[Crossref]

Arik, K.

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

Bell, R.

Borondics, F.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
[Crossref]

Bossard, J.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Bozhevolnyi, S.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Bringuier, J.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Chashnikova, M.

Chen, B.

Chen, L.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Cheng, F.

Cheng, H.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Deparis, O.

Ding, F.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Djurišic, A.

Dong, L.

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

Egorov, A.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Elazar, J.

Evlashin, S.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Fan, S.

L. Zhu, A. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. USA 112, 12282–12287 (2015).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[Crossref]

Fang, N.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Farajollahi, S.

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

Fedosenko, O.

Feng, G.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Feng, Y.

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Flores, Y.

Fu, S.

Fung, K.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Gao, J.

Gao, X.

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Gruska, B.

Gu, M.

M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Guo, L.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Guo, W.

Haddon, R. C.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
[Crossref]

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Hamon, M. A.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Han, T.

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

He, S.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

He, X.

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Henrard, L.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Hong, J.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Hossain, M.

M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Hu, H.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Huber, M. C. E.

M. C. E. Huber, A. Pauluhn, and J. G. Timothy, Observing Photons in Space (Springer, 2013).

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Itkis, M. E.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
[Crossref]

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Jia, B.

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Jia, J.

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Jokerst, N.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Kaplan, A.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Khavasi, A.

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

Kim, K.

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

Kim, Y.

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

Kinzel, E.

T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
[Crossref]

Kischkat, J.

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Klinkmüller, M.

Koirala, M.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Kraus, J.

J. Kraus and R. Marhefka, Antennas for All Applications (McGraw-Hill, 2002).

Lai, Y.

Landy, N.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lard, M.

Lee, Y.

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

Li, B.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Li, H.

H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Li, J.

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

Lin, A.

Lin, L.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Liu, L.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, S.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Liu, T.

T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
[Crossref]

Liu, X.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Liu, Y.

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Lobet, M.

Luo, C.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Ma, H.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Ma, W.

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
[Crossref]

Machulik, S.

Majewski, M.

Marhefka, R.

J. Kraus and R. Marhefka, Antennas for All Applications (McGraw-Hill, 2002).

Masselink, W. T.

Mayer, T.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Mazur, E.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Meng, M. E.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Mo, L.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Mock, J.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Monastyrskyi, G.

Murzina, T.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Newquist, L.

Niyogi, S.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Novikova, N.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Ordal, M.

Padilla, W.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Pauluhn, A.

M. C. E. Huber, A. Pauluhn, and J. G. Timothy, Observing Photons in Space (Springer, 2013).

Peters, S.

Pilevsky, A.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Qu, C.

T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
[Crossref]

Querry, M.

Ra’di, Y.

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Rakhimov, A.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Rakic, A.

Raman, A.

L. Zhu, A. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. USA 112, 12282–12287 (2015).
[Crossref]

Rejaei, B.

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[Crossref]

Rhee, J.

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

Sajuyigbe, S.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sarrazin, M.

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Semtsiv, M.

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Simovski, C.

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Smith, D.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Starr, A.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Starr, T.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Stepanov, A.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Suetin, N.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Svyakhovskiy, S.

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

Timothy, J. G.

M. C. E. Huber, A. Pauluhn, and J. G. Timothy, Observing Photons in Space (Springer, 2013).

Tretyakov, S.

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

Tu, M.

Turhan-Sayan, G.

K. Üstün and G. Turhan-Sayan, “Ultra-broadband long-wavelength infrared metamaterial absorber based on a double-layer metasurface structure,” J. Opt. Soc. Am. B 34, 456–462 (2017).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

Tyler, T.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Üstün, K.

K. Üstün and G. Turhan-Sayan, “Ultra-broadband long-wavelength infrared metamaterial absorber based on a double-layer metasurface structure,” J. Opt. Soc. Am. B 34, 456–462 (2017).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

Wang, S.

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

Wang, Y.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Watts, C.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wen, Y.

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
[Crossref]

Werner, D.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

West, K.

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Xiong, H.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Xu, J.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Yang, X.

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
[Crossref]

Yoo, Y.

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

Yu, A.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
[Crossref]

Yu, P.

Yu, X.

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21, 30724–30730 (2013).
[Crossref]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Yun, S.

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

Zhao, L.

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Zhao, Y.

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

Zhong, L.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Zhong, Y.

Zhou, J.

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Zhu, L.

L. Zhu, A. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. USA 112, 12282–12287 (2015).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

ACS Nano (1)

J. Bossard, L. Lin, S. Yun, L. Liu, D. Werner, and T. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8, 1517–1524 (2014).
[Crossref]

ACS Photon. (1)

J. Zhou, A. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photon. 1, 618–624 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3, 1047–1051 (2015).
[Crossref]

Adv. Sci. (1)

M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

W. Ma, Y. Wen, X. Yu, Y. Feng, and Y. Zhao, “Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber,” Appl. Phys. Lett. 106, 111108 (2015).
[Crossref]

B. Adomanis, C. Watts, M. Koirala, X. Liu, T. Tyler, K. West, T. Starr, J. Bringuier, A. Starr, N. Jokerst, and W. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107, 021107 (2015).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Carbon (1)

S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, “Optical and IR absorption of multilayer carbon nanowalls,” Carbon 70, 111–118 (2014).
[Crossref]

J. Appl. Phys. (2)

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114, 064109 (2013).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120, 203101 (2016).
[Crossref]

J. Electromagn. Waves. Appl. (1)

J. Rhee, Y. Yoo, K. Kim, Y. Kim, and Y. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves. Appl. 28, 1541–1580 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

W. Ma, S. Wang, Y. Wen, Y. Zhao, L. Dong, and X. Yu, “Uncooled focal plane array for multiband IR imaging using optical-readout bimaterial cantilevers,” J. Microelectromech. Syst. 24, 582–591 (2015).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Laser Photon. Rev. (2)

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photon. Rev. 8, 946–953 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Laser Phys. (1)

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18, 1148–1152 (2008).
[Crossref]

Nano Lett. (3)

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002).
[Crossref]

Opt. Commun. (1)

K. Arik, S. Abdollahramezani, S. Farajollahi, A. Khavasi, and B. Rejaei, “Design of mid-infrared ultra-wideband metallic absorber based on circuit theory,” Opt. Commun. 381, 309–313 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Phys. Rev. Lett. (3)

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

X. Liu, T. Starr, A. Starr, and W. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

L. Zhu, A. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. USA 112, 12282–12287 (2015).
[Crossref]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[Crossref]

Proc. SPIE (1)

T. Liu, C. Qu, M. Almasri, and E. Kinzel, “Design and analysis of frequency-selective surface enabled microbolometers,” Proc. SPIE 9819, 98191V (2016).
[Crossref]

Sci. Rep. (1)

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Science (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006).
[Crossref]

Sens. Actuators A (1)

L. Zhao, X. He, J. Li, X. Gao, and J. Jia, “Electrosprayed carbon-based black coatings for pyroelectric detectors,” Sens. Actuators A 196, 16–21 (2013).
[Crossref]

Other (4)

J. Kraus and R. Marhefka, Antennas for All Applications (McGraw-Hill, 2002).

M. C. E. Huber, A. Pauluhn, and J. G. Timothy, Observing Photons in Space (Springer, 2013).

“CST-—Computer Simulation Technology,” 2016, http://www.cst.com .

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) 2×2 array of the Ti/dielectric/Al metamaterial absorber structure showing the design parameters of the single resonator type unit cells; (b) absorptance spectra of the Ti/Ge/Al LWIR absorber computed under normal incidence of light for two different sets of parameters; (c) absorptance spectrum of the Ti/SiO2/Al MWIR absorber computed under normal incidence of light.

Fig. 2.
Fig. 2.

Electric and magnetic field distributions for Ti/Ge/Al metamaterial absorber structure at x=0 plane (cross section given in Fig. 1) for the design parameters in Set 1. Magnitudes of the complex fields Ey, Ez, and Hx are given in (a)–(c) and (d)–(f) at the resonance wavelengths of approximately 8.42 and 11.05 μm, respectively.

Fig. 3.
Fig. 3.

Electric and magnetic field distributions for Ti/SiO2/Al metamaterial absorber structure at x=0 plane (cross section given in Fig. 1). Magnitudes of the complex fields Ey, Ez, and Hx are given in (a)–(c) and (d)–(f) at the wavelengths of approximately 2.58 and 4.62 μm, respectively.

Fig. 4.
Fig. 4.

Variation of the absorption spectrum with incidence angle and with polarization of light for the Ti/Ge/Al absorber that is designed with parameter Set 1 (see Table 1). (a) Incident electric field is in y direction; (b) incident magnetic field is in y direction.

Fig. 5.
Fig. 5.

Variation of the absorption spectrum with incidence angle and with polarization of light for the Ti/SiO2/Al absorber design with the parameter set given in Table 1. (a) Incident electric field is in y direction; (b) incident magnetic field is in y direction.

Fig. 6.
Fig. 6.

Variation of the merit figure (average absorptance over the OBW) with respect to changes in the design parameters for the Ti/Ge/Al structure (LWIR absorber designed with parameter Set 1) when (a) {D and p} and (b) {htop and hDi} are varied simultaneously, keeping the other design parameters fixed.

Fig. 7.
Fig. 7.

Variation of the merit figure (average absorptance over the OBW) with respect to changes in the design parameters for the Ti/SiO2/Al structure (MWIR absorber) when (a) {D and p} and (b) {htop and hDi} are varied simultaneously, keeping the other design parameters fixed.

Fig. 8.
Fig. 8.

(a) IR absorber design topology with the protective SiN coating; (b) absorption spectra of the Ti/Ge/Al metamaterial absorber (Set 1) with and without the protective coating of 65 nm thick SiN layer; (c) absorption spectra of the Ti/SiO2/Al metamaterial absorber with and without the protective coating of 50-nm-thick SiN layer. In both cases, design parameters of the original structure are slightly adjusted to maintain a similar absorber performance in the presence of the SiN layer.

Tables (1)

Tables Icon

Table 1. Three Different Sets of Design Parameters and the Resulting Absorption Windows for the LWIR and MWIR Absorbersa

Metrics