Abstract

Measuring the shift in the resonance wavelength of a high-Q dielectric whispering gallery mode resonator in the presence of a modified dielectric environment is a prime sensing strategy. To improve the sensitivity, means have to be identified that push the mode profile outside the resonator to enhance its interaction with the environment. Here, we study theoretically and numerically a photonic metadevice consisting of gold nanoparticles at a high concentration deposited on top of a microdisk resonator. Careful spectral tuning of the plasmonic resonance relative to the whispering gallery mode increases the sensitivity to a notable extent at an acceptable simultaneous decrease of the quality factor. Contrary to comparable approaches that rely on thin metallic films, which require in their fabrication an unprecedented precision, our metamaterial-inspired approach is robust against fabrication imperfection as the only critical parameter is the nanoparticle density.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities

Mingming Jiang, Jitao Li, Chunxiang Xu, Shuangpeng Wang, Chongxin Shan, Bin Xuan, Yongqiang Ning, and Dezhen Shen
Opt. Express 22(20) 23836-23850 (2014)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance

Sarah Krämmer, Sanaz Rastjoo, Tobias Siegle, Sentayehu F. Wondimu, Carolin Klusmann, Christian Koos, and Heinz Kalt
Opt. Express 25(7) 7884-7894 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
    [Crossref]
  2. N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
    [Crossref]
  3. J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16, 080901 (2011).
    [Crossref]
  4. M. R. Foreman, W.-L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22, 5491–5511 (2014).
    [Crossref]
  5. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
    [Crossref]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  7. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
    [Crossref]
  8. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  9. M. Rex, F. E. Hernandez, and A. D. Campiglia, “Pushing the limits of mercury sensors with gold nanorods,” Anal. Chem. 78, 445–451 (2006).
    [Crossref]
  10. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
    [Crossref]
  11. M. Chamanzar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in CLEO: 2011—Laser Science to Photonic Applications (2011), pp. 1–2.
  12. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
    [Crossref]
  13. K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).
    [Crossref]
  14. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
    [Crossref]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  16. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
    [Crossref]
  17. Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
    [Crossref]
  18. C.-L. Zou, Y.-F. Xiao, Z.-F. Han, C.-H. Dong, X.-D. Chen, J.-M. Cui, G.-C. Guo, and F.-W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27, 2495–2498 (2010).
    [Crossref]
  19. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
    [Crossref]
  20. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
    [Crossref]
  21. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
    [Crossref]
  22. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
  23. M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
    [Crossref]
  24. M. R. Foreman and F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
    [Crossref]
  25. A. Hammiche, R. Webb, and I. Wilson, “A scanning tunnelling microscopy study of thin gold films evaporated on silicon,” Vacuum 45, 569–573 (1994).
    [Crossref]
  26. P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
    [Crossref]
  27. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
    [Crossref]
  28. J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
    [Crossref]
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  30. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996), Vol. 3.
  31. E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
    [Crossref]
  32. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref]
  33. H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photon. 3, 1943–1951 (2016).
    [Crossref]
  34. S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
    [Crossref]
  35. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  36. S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: an adaptive FEM solver or precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications (2008), paper ITuE4.
  37. Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
    [Crossref]
  38. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  39. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
    [Crossref]
  40. D.-S. Wang and C.-W. Lin, “Density-dependent optical response of gold nanoparticle monolayers on silicon substrates,” Opt. Lett. 32, 2128–2130 (2007).
    [Crossref]
  41. C. Rockstuhl and T. Scharf, Amorphous Nanophotonics, Nano-Optics and Nanophotonics (Springer, 2013).
  42. R. Hightower and C. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850–4855 (1988).
    [Crossref]
  43. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  44. E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  45. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [Crossref]
  46. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
    [Crossref]
  47. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
    [Crossref]
  48. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).
    [Crossref]
  49. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
    [Crossref]
  50. C. Bréchignac, P. Houdy, and M. Lahmani, Nanomaterials and Nanochemistry (Springer, 2008).

2016 (2)

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photon. 3, 1943–1951 (2016).
[Crossref]

2015 (1)

2014 (3)

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

M. R. Foreman, W.-L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22, 5491–5511 (2014).
[Crossref]

K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).
[Crossref]

2013 (2)

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

M. R. Foreman and F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[Crossref]

2012 (4)

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
[Crossref]

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

2011 (7)

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16, 080901 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[Crossref]

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

2010 (5)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

C.-L. Zou, Y.-F. Xiao, Z.-F. Han, C.-H. Dong, X.-D. Chen, J.-M. Cui, G.-C. Guo, and F.-W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27, 2495–2498 (2010).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

2009 (2)

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

2008 (5)

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[Crossref]

2007 (1)

2006 (1)

M. Rex, F. E. Hernandez, and A. D. Campiglia, “Pushing the limits of mercury sensors with gold nanorods,” Anal. Chem. 78, 445–451 (2006).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

2000 (1)

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[Crossref]

1998 (1)

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

1996 (1)

1994 (1)

A. Hammiche, R. Webb, and I. Wilson, “A scanning tunnelling microscopy study of thin gold films evaporated on silicon,” Vacuum 45, 569–573 (1994).
[Crossref]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[Crossref]

1988 (1)

1974 (1)

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adibi, A.

M. Chamanzar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in CLEO: 2011—Laser Science to Photonic Applications (2011), pp. 1–2.

Ament, I.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Andreani, L. C.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Arnold, S.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Baaske, M. D.

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Boriskina, S. V.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[Crossref]

Bréchignac, C.

C. Bréchignac, P. Houdy, and M. Lahmani, Nanomaterials and Nanochemistry (Springer, 2008).

Brooke, M.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Burger, S.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: an adaptive FEM solver or precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications (2008), paper ITuE4.

Bürgi, T.

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Campiglia, A. D.

M. Rex, F. E. Hernandez, and A. D. Campiglia, “Pushing the limits of mercury sensors with gold nanorods,” Anal. Chem. 78, 445–451 (2006).
[Crossref]

Campillo, A. J.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996), Vol. 3.

Cetinkaya, M.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

Chamanzar, M.

M. Chamanzar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in CLEO: 2011—Laser Science to Photonic Applications (2011), pp. 1–2.

Chang, R. K.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996), Vol. 3.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, W.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Chen, X.-D.

Ching, E.

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, S. T.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Clarke, J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Cui, J.-M.

Das, G.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

De Angelis, F.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Demirel, M. C.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Dhar, S.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Di Fabrizio, E.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Dintinger, J.

Doeleman, H. M.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photon. 3, 1943–1951 (2016).
[Crossref]

Dong, C.-H.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

C.-L. Zou, Y.-F. Xiao, Z.-F. Han, C.-H. Dong, X.-D. Chen, J.-M. Cui, G.-C. Guo, and F.-W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27, 2495–2498 (2010).
[Crossref]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Fan, X.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Flood, E. M.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Foreman, M. R.

Galli, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Gill, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Goad, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Goldsmith, R. H.

K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).
[Crossref]

Gong, Q.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Gorodetsky, M. L.

Gu, M.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16, 080901 (2011).
[Crossref]

Guo, G.-C.

Hammiche, A.

A. Hammiche, R. Webb, and I. Wilson, “A scanning tunnelling microscopy study of thin gold films evaporated on silicon,” Vacuum 45, 569–573 (1994).
[Crossref]

Han, Z.-F.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

C.-L. Zou, Y.-F. Xiao, Z.-F. Han, C.-H. Dong, X.-D. Chen, J.-M. Cui, G.-C. Guo, and F.-W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27, 2495–2498 (2010).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Henkel, A.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Hernandez, F. E.

M. Rex, F. E. Hernandez, and A. D. Campiglia, “Pushing the limits of mercury sensors with gold nanorods,” Anal. Chem. 78, 445–451 (2006).
[Crossref]

Heylman, K. D.

K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).
[Crossref]

Hightower, R.

Hnatowicz, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
[Crossref]

Holler, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Hosseini, E. S.

M. Chamanzar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in CLEO: 2011—Laser Science to Photonic Applications (2011), pp. 1–2.

Houdy, P.

C. Bréchignac, P. Houdy, and M. Lahmani, Nanomaterials and Nanochemistry (Springer, 2008).

Hryniewicz, J. V.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Hu, Y.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

Ilchenko, V. S.

Ja, S. J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Jin, W.-L.

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jokerst, N. M.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).

King, O.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Knapper, K. A.

K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).
[Crossref]

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[Crossref]

Knobbe, E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Koenderink, A. F.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photon. 3, 1943–1951 (2016).
[Crossref]

Kreibig, U.

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
[Crossref]

Lahmani, M.

C. Bréchignac, P. Houdy, and M. Lahmani, Nanomaterials and Nanochemistry (Springer, 2008).

Lederer, F.

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[Crossref]

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[Crossref]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

Leung, P.

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Li, B.-B.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Y.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Lin, C.-W.

Little, B. E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Liu, Y.-C.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Luan, L.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Ma, C.-Y.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Maksymov, I.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Malinský, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
[Crossref]

Menzel, C.

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Mühlig, S.

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Palit, S.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Patrini, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

Pniewski, J.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

Pomplun, J.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: an adaptive FEM solver or precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications (2008), paper ITuE4.

Prasad, J.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Ramachandran, A.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Rex, M.

M. Rex, F. E. Hernandez, and A. D. Campiglia, “Pushing the limits of mercury sensors with gold nanorods,” Anal. Chem. 78, 445–451 (2006).
[Crossref]

Richardson, C.

Rockstuhl, C.

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[Crossref]

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[Crossref]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

C. Rockstuhl and T. Scharf, Amorphous Nanophotonics, Nano-Optics and Nanophotonics (Springer, 2013).

Royal, M.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Ruppin, R.

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[Crossref]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

Savchenkov, A. A.

Scharf, T.

Schmachtel, S.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Schmidt, F.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: an adaptive FEM solver or precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications (2008), paper ITuE4.

Shalkevich, N.

Shao, L.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Simovski, C. R.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

Slepicka, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
[Crossref]

Sönnichsen, C.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Suen, W.

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Sun, F.-W.

Švorcík, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[Crossref]

Tong, S.

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Tretyakov, S. A.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

Tyler, T.

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

van den Brink, A. M.

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Verhagen, E.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photon. 3, 1943–1951 (2016).
[Crossref]

Vollmer, F.

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).
[Crossref]

M. R. Foreman, W.-L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22, 5491–5511 (2014).
[Crossref]

M. R. Foreman and F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[Crossref]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wald, L.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Wang, D.-S.

Wang, S.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Webb, R.

A. Hammiche, R. Webb, and I. Wilson, “A scanning tunnelling microscopy study of thin gold films evaporated on silicon,” Vacuum 45, 569–573 (1994).
[Crossref]

White, I. M.

Wilson, I.

A. Hammiche, R. Webb, and I. Wilson, “A scanning tunnelling microscopy study of thin gold films evaporated on silicon,” Vacuum 45, 569–573 (1994).
[Crossref]

Wu, J.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16, 080901 (2011).
[Crossref]

Xiao, Y.-F.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

C.-L. Zou, Y.-F. Xiao, Z.-F. Han, C.-H. Dong, X.-D. Chen, J.-M. Cui, G.-C. Guo, and F.-W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27, 2495–2498 (2010).
[Crossref]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Yannopapas, V.

Yegnanarayanan, S.

M. Chamanzar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in CLEO: 2011—Laser Science to Photonic Applications (2011), pp. 1–2.

Young, K.

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zou, C.-L.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

C.-L. Zou, Y.-F. Xiao, Z.-F. Han, C.-H. Dong, X.-D. Chen, J.-M. Cui, G.-C. Guo, and F.-W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27, 2495–2498 (2010).
[Crossref]

Zschiedrich, L.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: an adaptive FEM solver or precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications (2008), paper ITuE4.

ACS Photon. (1)

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photon. 3, 1943–1951 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

M. Rex, F. E. Hernandez, and A. D. Campiglia, “Pushing the limits of mercury sensors with gold nanorods,” Anal. Chem. 78, 445–451 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[Crossref]

Biosens. Bioelectron. (1)

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23, 939–944 (2008).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst. 3, 202–211 (2009).
[Crossref]

J. Biomed. Opt. (1)

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16, 080901 (2011).
[Crossref]

J. Biophoton. (1)

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophoton. 5, 629–638 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

K. D. Heylman, K. A. Knapper, and R. H. Goldsmith, “Photothermal microscopy of nonluminescent single particles enabled by optical microresonators,” J. Phys. Chem. Lett. 5, 1917–1923 (2014).
[Crossref]

J. Phys. F (1)

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
[Crossref]

Metamaterials (1)

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[Crossref]

Nano Lett. (2)

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic- photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[Crossref]

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7, 241–248 (2012).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Photonics (2)

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (3)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Opt. Commun. (1)

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (2)

M. R. Foreman and F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[Crossref]

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Phys. Rev. B (3)

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105, 153902 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).

Rev. Mod. Phys. (1)

E. Ching, P. Leung, A. M. van den Brink, W. Suen, S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Vacuum (1)

A. Hammiche, R. Webb, and I. Wilson, “A scanning tunnelling microscopy study of thin gold films evaporated on silicon,” Vacuum 45, 569–573 (1994).
[Crossref]

Other (7)

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: an adaptive FEM solver or precise simulations in nano-optics,” in Integrated Photonics and Nanophotonics Research and Applications (2008), paper ITuE4.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996), Vol. 3.

M. Chamanzar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in CLEO: 2011—Laser Science to Photonic Applications (2011), pp. 1–2.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

C. Rockstuhl and T. Scharf, Amorphous Nanophotonics, Nano-Optics and Nanophotonics (Springer, 2013).

C. Bréchignac, P. Houdy, and M. Lahmani, Nanomaterials and Nanochemistry (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Artistic illustration of the hybrid resonator under consideration. It is comprised of gold NPs at a high concentration deposited on the surface of a microdisk (top). Within an effective medium approach, the random assembly of gold NPs can be modeled as a homogeneous shell with an effective permittivity (bottom).

Fig. 2.
Fig. 2.

(a) Real and (b) imaginary parts of the effective permittivity of a homogeneous medium comprised of 50 nm gold NPs dispersed in water (εb=1.77) for different NP filling fractions f. The permittivity εd=2.25 of the dielectric resonator is marked as horizontal gray dashed line in (a).

Fig. 3.
Fig. 3.

Cross section of a hybrid microdisk with a radius of 25 μm and a thickness of 1.2 μm coated with a plasmonic shell of NP filling fraction f=0.1. The x- and y-coordinates are defined relative to the rotation axis of the microdisk. The electric field intensity distribution of a fundamental TE hybrid mode with mode number 392 localized at the outer rim of the microdisk is visualized in false color representation. The inner and outer white solid lines mark the boundaries of the 50 nm thick effective medium covering the microdisk.

Fig. 4.
Fig. 4.

Scattered power of a spherical resonator with radius 1.5 μm (εd=2.25) covered with 248 randomly distributed gold nanoparticles with 25 nm radius for (a) a TE- and (b) a TM-polarized WGM with mode number m=18. Simulations are performed for two different background permittivities [εb=1 (solid lines) and εb=1.014 (dashed lines)]. The black curves denote the simulation results obtained by modeling the NPs around the dielectric sphere as an effective medium; the red curves are obtained from an exact calculation using multi-Mie theory.

Fig. 5.
Fig. 5.

Q-factor (red) and wavelength shift (black) of fundamental TE modes of varying azimuthal mode numbers of a hybrid microdisk with NP filling fraction f=0.023 plotted as a function of the wavelength detuning Δλ=λWGMλNP between the WGM resonance λWGM of the bare dielectric resonator and the plasmonic resonance λNP. The wavelength shift induced upon coupling to the plasmonic shell is determined from the peak position of the hybrid mode relative to the WGM of the same mode number in the bare dielectric microdisk.

Fig. 6.
Fig. 6.

(a) BRIS of a hybrid microdisk with NP filling fraction f=0.023 (red) and BRIS of the corresponding WGMs of a bare dielectric microdisk with same dimensions (black) plotted against the wavelength detuning Δλ=λWGMλNP between the WGM resonance λWGM and the plasmonic resonance λNP. (b) The BRIS enhancement factor η quantifies the net enhancement effect of the plasmonic shell on the sensitivity. The black dashed horizontal line represents the BRIS of the bare dielectric resonator.

Fig. 7.
Fig. 7.

BRIS (red solid line) and Q-factor (red triangles) of a TE mode (m=392) of a hybrid microdisk plotted as a function of the NP filling fraction f. The lowest tolerable Q-factor in the hybrid system is highlighted as horizontal blue dashed line setting an upper limit for the NP filling fraction. Both performance parameters are simulated for the same mode in a microdisk with an ultra-thin homogeneous gold coating of varying metal thickness instead of a plasmonic shell with varying permittivity and plotted in black against the metal thickness. Green reference lines point out the potential of an effective medium to mimic metal thicknesses <15  nm.

Fig. 8.
Fig. 8.

Each curve is composed of the sum of 60 Lorentzian functions with full width at half-maximum Γ. Two neighboring maxima of the Lorentzians are separated by the free spectral range (FSR). Shown is the result of their summation for varying ratios FSR/Γ between 0.33 (pink) and 0.67 (black) as a function of the normalized frequency ω/FSR. Two neighboring Lorentzians can be well resolved individually if FSR/Γ0.59.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

εeff(λ)=εb3+2Nα(λ)V3Nα(λ)V.
α(λ)=12πicZkη2j1(ηx)[xj1(x)]j1(x)[ηxj1(ηx)]j1(ηx)[xh1(1)(x)]h1(1)(x)[ηxj1(ηx)],

Metrics