Abstract

Resonant magnetic energy accumulation is theoretically investigated in the optical and near-infrared regions. It is demonstrated that the silicon nanocylinders with and without coaxial through holes can be used for the control and manipulation of optical magnetic fields, providing up to 26-fold enhancement of these fields for the considered system. Magnetic field distributions and dependence on the parameters of nanocylinders are revealed at the wavelengths of magnetic dipole and quadrupole resonances responsible for the enhancement. The obtained results can be applied, for example, to designing nanoantennas for the detection of atoms with magnetic optical transitions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling magnetic and electric dipole modes in hollow silicon nanocylinders

Marie Anne van de Haar, Jorik van de Groep, Benjamin J.M. Brenny, and Albert Polman
Opt. Express 24(3) 2047-2064 (2016)

Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region

Xuting Ci, Botao Wu, Yan Liu, Gengxu Chen, E Wu, and Heping Zeng
Opt. Express 22(20) 23749-23758 (2014)

Multipolar nonlinear nanophotonics

Daria Smirnova and Yuri S. Kivshar
Optica 3(11) 1241-1255 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
    [Crossref]
  2. A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
    [Crossref]
  3. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
    [Crossref]
  4. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [Crossref]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  6. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
    [Crossref]
  7. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  8. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  9. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
    [Crossref]
  10. A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
    [Crossref]
  11. A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
    [Crossref]
  12. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
    [Crossref]
  13. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  14. M. A. Van De Haar, J. Van De Groep, B. J. M. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
    [Crossref]
  15. D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
    [Crossref]
  16. A. B. Evlyukhin, C. Reinhardt, A. B. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
    [Crossref]
  17. P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
    [Crossref]
  18. D. R. Huffman and C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  19. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref]
  20. M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
    [Crossref]
  21. L. Jelinek and R. Marqués, “Artificial magnetism and left-handed media from dielectric rings and rods,” J. Phys. Condens. Matter 22, 25902 (2010).
    [Crossref]
  22. A. Andryieuski, S. M. Kuznetsova, and A. V. Lavrinenko, “Applicability of point-dipoles approximation to all-dielectric metamaterials,” Phys. Rev. B 92, 035114 (2015).
    [Crossref]
  23. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref]
  24. A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).
  25. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]
  26. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 1–8 (2011).
    [Crossref]
  27. A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
    [Crossref]
  28. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref]
  29. K. V. Baryshnikova, A. B. Evlyukhin, and A. S. Shalin, “Magnetic hot-spots in hollow silicon cylinders,” J. Phys. Conf. Ser. 741, 012156 (2016).
    [Crossref]

2017 (1)

2016 (5)

K. V. Baryshnikova, A. B. Evlyukhin, and A. S. Shalin, “Magnetic hot-spots in hollow silicon cylinders,” J. Phys. Conf. Ser. 741, 012156 (2016).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

M. A. Van De Haar, J. Van De Groep, B. J. M. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).

2015 (5)

A. Andryieuski, S. M. Kuznetsova, and A. V. Lavrinenko, “Applicability of point-dipoles approximation to all-dielectric metamaterials,” Phys. Rev. B 92, 035114 (2015).
[Crossref]

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref]

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
[Crossref]

2014 (3)

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
[Crossref]

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

2013 (3)

2012 (1)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

2011 (1)

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 1–8 (2011).
[Crossref]

2010 (3)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

L. Jelinek and R. Marqués, “Artificial magnetism and left-handed media from dielectric rings and rods,” J. Phys. Condens. Matter 22, 25902 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

2009 (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

2008 (1)

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

2006 (1)

2004 (1)

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Almeida, V. R.

Andryieuski, A.

A. Andryieuski, S. M. Kuznetsova, and A. V. Lavrinenko, “Applicability of point-dipoles approximation to all-dielectric metamaterials,” Phys. Rev. B 92, 035114 (2015).
[Crossref]

Arbel, D.

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Bakunov, M. I.

M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Baryshnikova, K.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Baryshnikova, K. V.

Bauch, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

Belov, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Belov, P. A.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

Bogdanov, A. A.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref]

Bohren, C. F.

D. R. Huffman and C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Brenny, B. J. M.

Burresi, M.

Chichkov, B. N.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).

A. B. Evlyukhin, C. Reinhardt, A. B. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 1–8 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

De Angelis, F.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Dostalek, J.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Evlyukhin, A. B.

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).

K. V. Baryshnikova, A. B. Evlyukhin, and A. S. Shalin, “Magnetic hot-spots in hollow silicon cylinders,” J. Phys. Conf. Ser. 741, 012156 (2016).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. B. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. B. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 1–8 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

Fischer, T.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Ginzburg, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref]

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Huffman, D. R.

D. R. Huffman and C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jelinek, L.

L. Jelinek and R. Marqués, “Artificial magnetism and left-handed media from dielectric rings and rods,” J. Phys. Condens. Matter 22, 25902 (2010).
[Crossref]

Karabchevsky, A.

Krasnok, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Kuznetsova, S. M.

A. Andryieuski, S. M. Kuznetsova, and A. V. Lavrinenko, “Applicability of point-dipoles approximation to all-dielectric metamaterials,” Phys. Rev. B 92, 035114 (2015).
[Crossref]

M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
[Crossref]

Lavrinenko, A. V.

A. Andryieuski, S. M. Kuznetsova, and A. V. Lavrinenko, “Applicability of point-dipoles approximation to all-dielectric metamaterials,” Phys. Rev. B 92, 035114 (2015).
[Crossref]

Liberale, C.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Lipson, M.

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Luk’Yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Markovich, D.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Marqués, R.

L. Jelinek and R. Marqués, “Artificial magnetism and left-handed media from dielectric rings and rods,” J. Phys. Condens. Matter 22, 25902 (2010).
[Crossref]

Maslov, A. V.

M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
[Crossref]

Miroshnichenko, A. E.

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Mirzaei, A.

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref]

Moehwald, H.

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
[Crossref]

Nazir, A.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Panaro, S.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Panepucci, R. R.

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

Polman, A.

Pratesi, F.

Proietti Zaccaria, R.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Quidant, R.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

Radziuk, D.

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).

A. B. Evlyukhin, C. Reinhardt, A. B. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 1–8 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

Riboli, F.

Righini, M.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

Samusev, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

Shalin, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Shalin, A. S.

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref]

K. V. Baryshnikova, A. B. Evlyukhin, and A. S. Shalin, “Magnetic hot-spots in hollow silicon cylinders,” J. Phys. Conf. Ser. 741, 012156 (2016).
[Crossref]

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sukhov, S. V.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

Terekhov, P. D.

Toma, A.

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Toma, K.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

Toma, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

Van De Groep, J.

Van De Haar, M. A.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

Vynck, K.

Wiersma, D. S.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Xu, Q.

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhang, Q.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhukov, S. N.

M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

L. Jelinek and R. Marqués, “Artificial magnetism and left-handed media from dielectric rings and rods,” J. Phys. Condens. Matter 22, 25902 (2010).
[Crossref]

J. Phys. Conf. Ser. (1)

K. V. Baryshnikova, A. B. Evlyukhin, and A. S. Shalin, “Magnetic hot-spots in hollow silicon cylinders,” J. Phys. Conf. Ser. 741, 012156 (2016).
[Crossref]

Nano Lett. (2)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, and A. Toma, “Fano coil-type resonance for magnetic hot-spot generation,” Nano Lett. 14, 3166–3171 (2014).
[Crossref]

Nanoscale (1)

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref]

Nat. Commun. (1)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Photon. Nanostr. Fundam. Appl. (1)

M. I. Bakunov, A. V. Maslov, S. M. Kuznetsova, and S. N. Zhukov, “Magnetic response of planar dielectric rings,” Photon. Nanostr. Fundam. Appl. 12, 114–121 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
[Crossref]

Phys. Rev. A (1)

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91, 1–6 (2015).
[Crossref]

Phys. Rev. B (5)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’Yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 1–12 (2010).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, and A. V. Lavrinenko, “Applicability of point-dipoles approximation to all-dielectric metamaterials,” Phys. Rev. B 92, 035114 (2015).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 205434, 1–8 (2016).

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 1–8 (2011).
[Crossref]

Phys. Rev. Lett. (1)

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 8–11 (2008).
[Crossref]

Plasmonics (1)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9, 781–799 (2014).
[Crossref]

Sci. Rep. (2)

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Other (1)

D. R. Huffman and C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cylinders, irradiated by a plane wave, which propagates (a) along the cylinder axis (frontal excitation) and (b) perpendicular to the cylinder axis (lateral excitation).

Fig. 2.
Fig. 2.

(a) and (c) Maps of the light wavelength of the first resonance (i.e., the resonance corresponding to the longest wavelength) as a function of the cylinder size parameters: (a) for the frontal excitation and (c) for the lateral excitation. (b) and (d) Maps of magnetic field enhancement coefficient (normalized magnetic field maximum) at the first resonance as a function of the cylinder size parameters: (b) for the frontal excitation and (d) for the lateral excitation. The white stars (a) and (b) correspond to the parameters chosen for the MHS illustration in Fig. 3. The white contoured islands (b) and (d) highlight the areas where the enhancement coefficient is greater than 20.

Fig. 3.
Fig. 3.

Top: normalized magnetic field distribution for the first resonance in nanocylinders in the case of the frontal excitation (side view). The white lines indicate the cylinders’ axes. All cases are shown in Figs. 2(a) and 2(b) by the white stars. Bottom: multipole decomposition of cylinders’ scattering cross section in the vicinity of the resonant wavelength. Several multipoles with rather significant contributions are shown: total electric dipole (TED, red line), magnetic dipole (MD, green line), electric quadrupole (EQ, blue line), and magnetic quadrupole (MQ, black line). Wavelength of the first resonance of MHS on the cylinder axis is marked by “MHS.” Parameters of the nanocylinders: left—radius R=60  nm, height H=120  nm, wavelength 564 nm; right—R=40  nm, H=230  nm, wavelength 482 nm.

Fig. 4.
Fig. 4.

Frontal (a) and lateral (b) excitations of a cylinder with a coaxial through hole. (c)–(j) Distributions of normalized magnetic field for the first resonance in the cylinders with radius R=60  nm and height H=120  nm (these parameters correspond to the maximal magnetic field enhancement in Figs. 2(b) and 2(d) and cylinders with coaxial holes of different radii. (c)–(f) Frontal and (g)–(j) lateral excitations. (d) Cavity radius is 6 nm, resonant wavelength is 566 nm; (e) cavity radius is 30 nm, resonant wavelength is 507 nm; (f) cavity radius is 54 nm, resonant wavelength is 494 nm; (h) cavity radius is 6 nm, resonant wavelength is 564 nm; (i) cavity radius is 30 nm, resonant wavelength is 543 nm; and (j) cavity radius is 54 nm, resonant wavelength is 440 nm. (k) The wavelengths corresponding to the first resonance as a function of the hole radius. (l) Magnetic field enhancement coefficient in the hole as a function of its radius.

Fig. 5.
Fig. 5.

Spectra of magnetic field enhancement coefficient for the cylinder without a hole in vacuum (black solid line), for the cylinder with a hole of radius 50 nm in vacuum (black dotted line), and for the cylinder without a hole on the glass substrate (blue dashed line) for frontal excitation (a) and for lateral excitation (b). Insets show distributions of normalized magnetic field at the resonance wavelengths at the plane crossing the MHS’s center, where the magnetic field is maximal. Index “×2” corresponds to the two maxima on the cylinder’s axis. All results correspond to the cylinders with R=190  nm, H=180  nm, and without a hole. The symbols “I,” “II,” and “III” indicate resonances whose evolutions are observed in Fig. 7. The most significant multipoles contributions for each resonant wavelength are shown (see Fig. 6 for details).

Fig. 6.
Fig. 6.

Normalized multipole contributions to the scattering cross section of a cylinder with H=180  nm, R=190  nm in free space with the following conditions: (a) particle with no hole, frontal irradiation; (b) particle with a hole of 50 nm radius, frontal irradiation; (c) particle with no hole, lateral irradiation; and (d) particle with a hole of 50 nm radius, frontal irradiation. Red vertical lines highlight spectral regions where MHSs take place. Blue lines highlight spectral regions where MHSs are suppressed while the magnetic dipole moment is resonantly increased. The most significant multipole contributions for each area are shown. The abbreviations on the legends are the same as in Fig. 3. The resonant contributions are marked by “(r).”

Fig. 7.
Fig. 7.

(a) and (b) Dependencies of the resonant wavelengths and magnetic field enhancement coefficients on the hole radius for the resonances marked by “I,” “II,” and “III” in Fig. 5 for the case of frontal excitation. (c) and (d) The same, but for lateral excitation. All the results are obtained for a cylinder with R=190  nm, H=180  nm in free space.

Metrics