Abstract

Resonant magnetic energy accumulation is theoretically investigated in the optical and near-infrared regions. It is demonstrated that the silicon nanocylinders with and without coaxial through holes can be used for the control and manipulation of optical magnetic fields, providing up to 26-fold enhancement of these fields for the considered system. Magnetic field distributions and dependence on the parameters of nanocylinders are revealed at the wavelengths of magnetic dipole and quadrupole resonances responsible for the enhancement. The obtained results can be applied, for example, to designing nanoantennas for the detection of atoms with magnetic optical transitions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling magnetic and electric dipole modes in hollow silicon nanocylinders

Marie Anne van de Haar, Jorik van de Groep, Benjamin J.M. Brenny, and Albert Polman
Opt. Express 24(3) 2047-2064 (2016)

Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region

Xuting Ci, Botao Wu, Yan Liu, Gengxu Chen, E Wu, and Heping Zeng
Opt. Express 22(20) 23749-23758 (2014)

Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures

Zhong-Jian Yang, Qian Zhao, and Jun He
Opt. Express 25(14) 15927-15937 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription