Abstract

This erratum gives corrections for the errors in a previously published paper [J. Opt. Soc. Am. B 17, 2032 (2000) [CrossRef]  ].

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Shelton, “Polarization and angle dependence for hyper-Rayleigh scattering from local and nonlocal modes of isotropic fluids,” J. Opt. Soc. Am. B 17, 2032–2036 (2000).
    [Crossref]
  2. D. P. Shelton, “Nonlocal hyper-Rayleigh scattering from liquid nitrobenzene,” J. Chem. Phys. 132, 154506 (2010).
    [Crossref]

2010 (1)

D. P. Shelton, “Nonlocal hyper-Rayleigh scattering from liquid nitrobenzene,” J. Chem. Phys. 132, 154506 (2010).
[Crossref]

2000 (1)

Shelton, D. P.

J. Chem. Phys. (1)

D. P. Shelton, “Nonlocal hyper-Rayleigh scattering from liquid nitrobenzene,” J. Chem. Phys. 132, 154506 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q ^ T 1 = λ X Y ^ + ( 1 λ Y ) X ^ [ ( 1 λ Y ) 2 + λ X 2 ] 1 / 2 ,
Q ^ T 2 = ( 1 λ Y ) λ Z Y ^ λ X λ Z X ^ + [ ( 1 λ Y ) 2 + λ X 2 ] Z ^ [ ( 1 λ Y ) 2 + λ X 2 ] 1 / 2 [ 2 ( 1 λ Y ) ] 1 / 2 ,
I V V / A T = sin 2 θ sin 2 ψ 1 + cos 2 ψ 2 cos θ cos ψ + [ ( cos ψ cos θ ) sin 2 ψ + R cos ψ ( 1 + cos 2 ψ 2 cos θ cos ψ ) ] 2 2 ( 1 cos θ cos ψ ) ( 1 + cos 2 ψ 2 cos θ cos ψ ) ,
I H V / A T = [ 1 + ( R 1 ) ( 1 cos θ cos ψ ) ] 2 sin 2 θ sin 2 ψ 1 + cos 2 ψ 2 cos θ cos ψ + [ ( cos ψ cos θ + ( R 1 ) sin 2 θ cos ψ ) sin 2 ψ + cos ψ ( 1 + cos 2 ψ 2 cos θ cos ψ ) ] 2 2 ( 1 cos θ cos ψ ) ( 1 + cos 2 ψ 2 cos θ cos ψ ) ,
I V H / A T = [ cos ψ cos θ ] 2 1 + cos 2 ψ 2 cos θ cos ψ + sin 2 θ sin 2 ψ 2 ( 1 cos θ cos ψ ) ( 1 + cos 2 ψ 2 cos θ cos ψ ) ,
I H H / A T = [ cos ψ cos θ ( R 1 ) cos θ ( 1 cos θ cos ψ ) ] 2 1 + cos 2 ψ 2 cos θ cos ψ + [ 1 + ( R 1 ) cos θ cos ψ ] 2 sin 2 θ sin 2 ψ 2 ( 1 cos θ cos ψ ) ( 1 + cos 2 ψ 2 cos θ cos ψ ) .