Abstract

We trap a single silica microparticle in a complex three-dimensional optical potential with orbital angular momentum in vacuum. The potential is formed by the generation of a “perfect vortex” in vacuum which, upon propagation, evolves to a Bessel light field. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle to produce a rich variety of orbital motions with respect to the propagation axis. As a result, the particle undergoes a complex trajectory, part of which is rotational motion in the plane of the “perfect vortex.” As the particle explores the whole three-dimensional volume and is not solely restricted to one anchor point, we are able to determine the three-dimensional optical potential in situ by tracking the particle. This represents the first demonstration of trapping a microparticle within a complex three-dimensional optical potential in vacuum. This may open up new perspectives in levitated optomechanics with particle dynamics on complex trajectories.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamics of microparticles trapped in a perfect vortex beam

Mingzhou Chen, Michael Mazilu, Yoshihiko Arita, Ewan M. Wright, and Kishan Dholakia
Opt. Lett. 38(22) 4919-4922 (2013)

Optical forces induced behavior of a particle in a non-diffracting vortex beam

Martin Šiler, Petr Jákl, Oto Brzobohatý, and Pavel Zemánek
Opt. Express 20(22) 24304-24319 (2012)

Trapping of low-index microparticles in an optical vortex

K. T. Gahagan and G. A. Swartzlander
J. Opt. Soc. Am. B 15(2) 524-534 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [Crossref]
  2. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
    [Crossref]
  3. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
    [Crossref]
  4. P. F. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
    [Crossref]
  5. D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
    [Crossref]
  6. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
    [Crossref]
  7. L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
    [Crossref]
  8. J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9, 806–810 (2013).
    [Crossref]
  9. A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
    [Crossref]
  10. Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
    [Crossref]
  11. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
    [Crossref]
  12. Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
    [Crossref]
  13. S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
    [Crossref]
  14. M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
    [Crossref]
  15. L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
    [Crossref]
  16. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
    [Crossref]
  17. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref]
  18. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  19. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
    [Crossref]
  20. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
    [Crossref]
  21. J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21, 20544–20555 (2013).
    [Crossref]
  22. J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2, 812–815 (2015).
    [Crossref]
  23. S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 6988–6993 (2010).
    [Crossref]
  24. E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19, 5833–5838 (2011).
    [Crossref]
  25. S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
    [Crossref]
  26. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
    [Crossref]
  27. C. Ryu and M. G. Boshier, “Integrated coherent matter wave circuits,” New J. Phys. 17, 092002 (2015).
    [Crossref]
  28. Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Data underpinning: dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three dimensional motion around a complex optical potential,” University of St Andrews, http://dx.doi.org/10.17630/7ad8b998-a344-4158-bfb2-e7c66f82377c , 2017.
  29. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [Crossref]
  30. K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
    [Crossref]

2017 (1)

L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
[Crossref]

2016 (1)

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

2015 (6)

C. Ryu and M. G. Boshier, “Integrated coherent matter wave circuits,” New J. Phys. 17, 092002 (2015).
[Crossref]

J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2, 812–815 (2015).
[Crossref]

Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
[Crossref]

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
[Crossref]

2013 (4)

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9, 806–810 (2013).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21, 20544–20555 (2013).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[Crossref]

2012 (1)

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

2011 (3)

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19, 5833–5838 (2011).
[Crossref]

2010 (7)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 6988–6993 (2010).
[Crossref]

P. F. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
[Crossref]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

2008 (1)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

2006 (2)

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

2005 (1)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Abramochkin, E.

Alieva, T.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Arita, Y.

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[Crossref]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

Arndt, M.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Asenbaum, P.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Auñón, J. M.

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Barker, P. F.

P. F. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Boshier, M. G.

C. Ryu and M. G. Boshier, “Integrated coherent matter wave circuits,” New J. Phys. 17, 092002 (2015).
[Crossref]

Castro, I.

Chang, D. E.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Chen, J.

L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
[Crossref]

Chen, M.

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[Crossref]

Cheshnovsky, O.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Denschlag, J. H.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

Deutsch, B.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Dholakia, K.

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[Crossref]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Garcés-Chávez, V.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Geraci, A. A.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Gieseler, J.

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9, 806–810 (2013).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Grier, D. G.

Hornberger, K.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Kheifets, S.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Kimble, H. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Kitching, J.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Kosloff, A.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Kuhn, S.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Lang, F.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

Lee, S.-H.

Li, T.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Mazilu, M.

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[Crossref]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

McKinley, A. W.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

Medellin, D.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Neukirch, L. P.

L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
[Crossref]

Nimmrichter, S.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Novotny, L.

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9, 806–810 (2013).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Painter, O.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Papp, S. B.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Patolsky, F.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Quidant, R.

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9, 806–810 (2013).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Raizen, M. G.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Regal, C. A.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Rodrigo, J. A.

Roichman, Y.

Rosenholm, J. M.

L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
[Crossref]

Rubinsztein-Dunlop, H.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

Ryu, C.

C. Ryu and M. G. Boshier, “Integrated coherent matter wave circuits,” New J. Phys. 17, 092002 (2015).
[Crossref]

Schmid, S.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

Sclafani, M.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Shanblatt, E. R.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Stickler, B. A.

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Thalhammer, G.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

Vamivakas, A. N.

L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
[Crossref]

Vettenburg, T.

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
[Crossref]

von Haartman, E.

L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
[Crossref]

Wilson, D. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Winkler, K.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Wright, E. M.

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Y. Arita, M. Mazilu, T. Vettenburg, E. M. Wright, and K. Dholakia, “Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances,” Opt. Lett. 40, 4751–4754 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[Crossref]

Xiao, K.-W.

L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
[Crossref]

Ye, J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Zemánek, P.

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Zhao, N.

L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
[Crossref]

Zhou, L.-M.

L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
[Crossref]

Zoller, P.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Anal. Chem. (1)

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref]

Appl. Phys. Lett. (2)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Laser Photon. Rev. (1)

L.-M. Zhou, K.-W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser Photon. Rev. 11, 1600284 (2017).
[Crossref]

Nano Lett. (1)

S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter, K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett. 15, 5604–5608 (2015).
[Crossref]

Nat. Commun. (1)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Nat. Photonics (2)

L. P. Neukirch, E. von Haartman, J. M. Rosenholm, and A. N. Vamivakas, “Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond,” Nat. Photonics 9, 653–657 (2015).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Nat. Phys. (2)

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9, 806–810 (2013).
[Crossref]

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

New J. Phys. (2)

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159–173 (2006).
[Crossref]

C. Ryu and M. G. Boshier, “Integrated coherent matter wave circuits,” New J. Phys. 17, 092002 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Rev. (1)

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Creating and probing of a perfect vortex in situ with an optically trapped particle,” Opt. Rev. 22, 162–165 (2015).
[Crossref]

Optica (1)

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, and K. Dholakia, “Orbital-angular-momentum transfer to optically levitated microparticles in vacuum,” Phys. Rev. A 94, 053821 (2016).
[Crossref]

Phys. Rev. Lett. (4)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

P. F. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA 107, 1005–1010 (2010).
[Crossref]

Rev. Mod. Phys. (1)

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

Science (2)

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Other (1)

Y. Arita, M. Chen, E. M. Wright, and K. Dholakia, “Data underpinning: dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three dimensional motion around a complex optical potential,” University of St Andrews, http://dx.doi.org/10.17630/7ad8b998-a344-4158-bfb2-e7c66f82377c , 2017.

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (4918 KB)      Video of a trapped microparticle.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Spatial profile of a perfect vortex beam propagating along the z axis with =15 compared with numerical simulations. Axial view of (a) a simulated beam and (b) a measured beam, with side view (cross section at y=0  μm) of (c) a simulated beam and (d) a measured profile. (e) Simulated beam intensity profile at y=0  μm and (f) a measured one. (g) Topography of the measured beam around the z axis with a schematic of the particle motion, where the arrows with broken lines indicate the paths of the particle and the arrows with Fi and g denote the inertial force and the acceleration due to gravity acting on the particle. Color bar indicates the relative beam intensity and applies to all panels. The dataset can be accessed at [28].

Fig. 2.
Fig. 2.

Particle trajectories and force fields around the trap. (a) COM of a microparticle trapped by a perfect vortex beam with =15 at a pressure of 55 mBar. The inset shows the path of the particle through one complete cycle. The execution order is indicated by the circled numbers. (b) Stokes drag force determined by a microparticle moving around the trap. The radial range (R20  μm) in the outward phase depends on the inertial force caused by the orbital motion at the Bessel beam (at r=5  μm) while the inward phase is driven by the scattering and the gradient forces. (See Visualization 1.)

Fig. 3.
Fig. 3.

Optical potential profile of the trap. (a) Experimentally determined optical potential (blue solid line) probed by a microparticle moving around the beam axis (r=0  μm). This potential curve is fitted with the beam intensity profile averaged over the particle diameter of 5 μm (green dotted line). (b) Optical potential presented in 3D. The dataset can be accessed at [28].

Fig. 4.
Fig. 4.

Particle trajectories with different topological charge =3,10, and 30 for blue, green and red crosses, respectively. Circled numbers indicate the order of the walked path when =30 (red crosses).

Fig. 5.
Fig. 5.

Particle oscillation frequency at different gas pressures. (a) Photodiode signal of the forward-scattered light from a trapped microparticle. (b) Oscillation frequency of a trapped microparticle inversely dependent on the background gas pressure P. The inset shows a power spectrum at the residual gas pressure of 15 mBar showing the oscillation frequency of 45 Hz. The dataset can be accessed at [28].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U(r)=r1r2Fs(r)dr.

Metrics