Abstract

Two-dimensional electronic spectroscopy based on passive phase stabilization methods is now well known and widely employed worldwide. In the most recent fully non-collinear implementations, a great phase stability is often achieved at the expense of the independent control over the pulse timings, limiting the full potential of the technique. Here we propose several modifications in the experiment geometry, calibration procedures, and data acquisition and processing routines. The setup is easily tunable to record different phase-matching directions, such as rephasing, non-rephasing and double quantum signals, still maintaining high levels of phase control and phase stability. The performances of the proposed setup are exemplified by measures on the standard dye zinc phtalocyanine and porphyrin J-aggregates.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Global analysis of coherence and population dynamics in 2D electronic spectroscopy

Andrea Volpato, Luca Bolzonello, Elena Meneghin, and Elisabetta Collini
Opt. Express 24(21) 24773-24785 (2016)

Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy

Ramūnas Augulis and Donatas Zigmantas
J. Opt. Soc. Am. B 30(6) 1770-1774 (2013)

Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection

Minjung Son, Sandra Mosquera-Vázquez, and Gabriela S. Schlau-Cohen
Opt. Express 25(16) 18950-18962 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Collini, “Spectroscopic signatures of quantum-coherent energy transfer,” Chem. Soc. Rev. 42, 4932–4947 (2013).
    [Crossref]
  2. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [Crossref]
  3. A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—a view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 31–49 (2014).
    [Crossref]
  4. A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
    [Crossref]
  5. L. Bolzonello, F. Fassioli, and E. Collini, “Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes,” J. Phys. Chem. Lett. 7, 4996–5001 (2016).
    [Crossref]
  6. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
    [Crossref]
  7. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [Crossref]
  8. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
    [Crossref]
  9. E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
    [Crossref]
  10. C. Manzoni, D. Brida, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012).
    [Crossref]
  11. F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
    [Crossref]
  12. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
    [Crossref]
  13. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
    [Crossref]
  14. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
    [Crossref]
  15. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
    [Crossref]
  16. A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
    [Crossref]
  17. D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
    [Crossref]
  18. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
    [Crossref]
  19. I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
    [Crossref]
  20. B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
    [Crossref]
  21. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
    [Crossref]
  22. F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
    [Crossref]
  23. V. Perlík, J. Hauer, and F. Šanda, “Finite pulse effects in single and double quantum spectroscopies,” J. Opt. Soc. Am. B 34, 430–439 (2017).
    [Crossref]
  24. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
    [Crossref]
  25. N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
    [Crossref]
  26. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).
  27. W. Dietel, J. J. Fontaine, and J.-C. Diels, “Intracavity pulse compression with glass: a new method of generating pulses shorter than 60  fsec,” Opt. Lett. 8, 4–6 (1983).
    [Crossref]
  28. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [Crossref]
  29. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
    [Crossref]
  30. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
    [Crossref]
  31. M. Daimon and A. Masumura, “High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326  nm,” Appl. Opt. 41, 5275–5281 (2002).
    [Crossref]
  32. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
    [Crossref]
  33. R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
    [Crossref]
  34. D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
    [Crossref]
  35. S. L. Marple, “Computing the discrete-time “analytic” signal via FFT,” IEEE Trans. Signal Process. 47, 2600–2603 (1999).
    [Crossref]
  36. G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
    [Crossref]
  37. J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 1375–1384 (2009).
    [Crossref]
  38. I. H. M. Van Stokkum, D. S. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657, 82–104 (2004).
    [Crossref]
  39. E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
    [Crossref]
  40. F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
    [Crossref]
  41. A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
    [Crossref]
  42. J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex,” J. Phys. Chem. Lett. 1, 2774–2780 (2010).
    [Crossref]
  43. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
    [Crossref]
  44. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
    [Crossref]
  45. J. R. Caram and G. S. Engel, “Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes,” Faraday Discuss. 153, 93–104 (2011).
    [Crossref]
  46. J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
    [Crossref]
  47. A. Volpato and E. Collini, “Time-frequency methods for coherent spectroscopy,” Opt. Express 23, 20040–20050 (2015).
    [Crossref]
  48. A. Volpato, L. Bolzonello, E. Meneghin, and E. Collini, “Global analysis of coherence and population dynamics in 2D electronic spectroscopy,” Opt. Express 24, 24773–24785 (2016).
    [Crossref]

2017 (2)

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

V. Perlík, J. Hauer, and F. Šanda, “Finite pulse effects in single and double quantum spectroscopies,” J. Opt. Soc. Am. B 34, 430–439 (2017).
[Crossref]

2016 (2)

L. Bolzonello, F. Fassioli, and E. Collini, “Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes,” J. Phys. Chem. Lett. 7, 4996–5001 (2016).
[Crossref]

A. Volpato, L. Bolzonello, E. Meneghin, and E. Collini, “Global analysis of coherence and population dynamics in 2D electronic spectroscopy,” Opt. Express 24, 24773–24785 (2016).
[Crossref]

2015 (4)

A. Volpato and E. Collini, “Time-frequency methods for coherent spectroscopy,” Opt. Express 23, 20040–20050 (2015).
[Crossref]

F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
[Crossref]

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

2014 (3)

F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
[Crossref]

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—a view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 31–49 (2014).
[Crossref]

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
[Crossref]

2013 (5)

R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
[Crossref]

E. Collini, “Spectroscopic signatures of quantum-coherent energy transfer,” Chem. Soc. Rev. 42, 4932–4947 (2013).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

2012 (2)

C. Manzoni, D. Brida, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012).
[Crossref]

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

2011 (4)

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
[Crossref]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

J. R. Caram and G. S. Engel, “Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes,” Faraday Discuss. 153, 93–104 (2011).
[Crossref]

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[Crossref]

2010 (5)

J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex,” J. Phys. Chem. Lett. 1, 2774–2780 (2010).
[Crossref]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
[Crossref]

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

2009 (7)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
[Crossref]

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 1375–1384 (2009).
[Crossref]

2008 (2)

2004 (3)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

I. H. M. Van Stokkum, D. S. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657, 82–104 (2004).
[Crossref]

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

2002 (1)

1999 (1)

S. L. Marple, “Computing the discrete-time “analytic” signal via FFT,” IEEE Trans. Signal Process. 47, 2600–2603 (1999).
[Crossref]

1998 (1)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

1994 (1)

1993 (1)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

1984 (1)

1983 (1)

Abramavicius, D.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Alexander Pines, B.

E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
[Crossref]

Almeida, J.

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

Anderson, H. L.

F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
[Crossref]

Anderson, L.

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Anna, J. M.

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

Augulis, R.

Avlasevich, Y.

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

Belsley, M. S.

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

Bolzonello, L.

L. Bolzonello, F. Fassioli, and E. Collini, “Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes,” J. Phys. Chem. Lett. 7, 4996–5001 (2016).
[Crossref]

A. Volpato, L. Bolzonello, E. Meneghin, and E. Collini, “Global analysis of coherence and population dynamics in 2D electronic spectroscopy,” Opt. Express 24, 24773–24785 (2016).
[Crossref]

Branczyk, A. M.

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—a view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 31–49 (2014).
[Crossref]

Brida, D.

Bristow, A. D.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Brixner, T.

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
[Crossref]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Büchel, C.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Butkus, V.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Camargo, F. V. A.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
[Crossref]

Camargo, F. V. d. A.

F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
[Crossref]

Caram, J. R.

J. R. Caram and G. S. Engel, “Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes,” Faraday Discuss. 153, 93–104 (2011).
[Crossref]

Carlsson, C.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Castro, E.

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

Cerullo, G.

Chin, A. W.

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

Cho, B. M.

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

Christensson, N.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

Cogdell, R. J.

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

Collini, E.

L. Bolzonello, F. Fassioli, and E. Collini, “Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes,” J. Phys. Chem. Lett. 7, 4996–5001 (2016).
[Crossref]

A. Volpato, L. Bolzonello, E. Meneghin, and E. Collini, “Global analysis of coherence and population dynamics in 2D electronic spectroscopy,” Opt. Express 24, 24773–24785 (2016).
[Crossref]

A. Volpato and E. Collini, “Time-frequency methods for coherent spectroscopy,” Opt. Express 23, 20040–20050 (2015).
[Crossref]

E. Collini, “Spectroscopic signatures of quantum-coherent energy transfer,” Chem. Soc. Rev. 42, 4932–4947 (2013).
[Crossref]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Cundiff, S. T.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Curmi, P. M. G.

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

Dai, X.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Daimon, M.

de A. Camargo, F. V.

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

DeLong, K. W.

Diels, J.-C.

Dietel, W.

Dimler, F.

Dinshaw, R.

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

Engel, G. S.

J. R. Caram and G. S. Engel, “Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes,” Faraday Discuss. 153, 93–104 (2011).
[Crossref]

E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
[Crossref]

Fassioli, F.

L. Bolzonello, F. Fassioli, and E. Collini, “Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes,” J. Phys. Chem. Lett. 7, 4996–5001 (2016).
[Crossref]

Fidler, A. F.

E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
[Crossref]

Fleming, G. R.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[Crossref]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Fontaine, J. J.

Fork, R. L.

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
[Crossref]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex,” J. Phys. Chem. Lett. 1, 2774–2780 (2010).
[Crossref]

Gall, A.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Gallagher Faeder, S. M.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Gelzinis, A.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Gieseking, B.

Gordon, J. P.

Grimmelsmann, L.

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

Hagen, K. R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Halpin, A.

Harel, E.

E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
[Crossref]

Hauer, J.

V. Perlík, J. Hauer, and F. Šanda, “Finite pulse effects in single and double quantum spectroscopies,” J. Opt. Soc. Am. B 34, 430–439 (2017).
[Crossref]

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
[Crossref]

Heisler, I. A.

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
[Crossref]

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
[Crossref]

Huelga, S. F.

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Ishizaki, A.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[Crossref]

Jimenez, R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Jonas, D. M.

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Kane, D. J.

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[Crossref]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

Karaiskaj, D.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Kauffmann, H. F.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
[Crossref]

Kim, J.

J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 1375–1384 (2009).
[Crossref]

Kitney, K.

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

Langhojer, F.

Larsen, D. S.

I. H. M. Van Stokkum, D. S. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657, 82–104 (2004).
[Crossref]

Lee, K.-K.

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

Lewis, K. L. M.

Li, H.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Löhrig, T.

Mancal, T.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Manzoni, C.

Marple, S. L.

S. L. Marple, “Computing the discrete-time “analytic” signal via FFT,” IEEE Trans. Signal Process. 47, 2600–2603 (1999).
[Crossref]

Martinez, O. E.

Masumura, A.

Meech, S. R.

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
[Crossref]

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
[Crossref]

Meneghin, E.

Miller, R. J. D.

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Milota, F.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
[Crossref]

Moca, R.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
[Crossref]

Moody, G.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Mukamel, S.

J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 1375–1384 (2009).
[Crossref]

Müllen, K.

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

Mulvaney, R. M.

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

Myers, J. A.

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

Nemeth, A.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
[Crossref]

Ogilvie, J. P.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

F. D. Fuller, D. E. Wilcox, and J. P. Ogilvie, “Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry,” Opt. Express 22, 1018–1027 (2014).
[Crossref]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[Crossref]

J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex,” J. Phys. Chem. Lett. 1, 2774–2780 (2010).
[Crossref]

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Ostroumov, E. E.

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

Pascher, T.

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

Perlík, V.

Plenio, M. B.

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

Prior, J.

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

Prokhorenko, V. I.

Pullerits, T.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

Robert, B.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Šanda, F.

Schlau-Cohen, G. S.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[Crossref]

Scholes, G. D.

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—a view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 31–49 (2014).
[Crossref]

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 1375–1384 (2009).
[Crossref]

Schwarz, C.

Selig, U.

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

Siemens, M. E.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Smith, E. R.

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

Songaila, E.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Sperling, J.

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single-and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34, 3301–3303 (2009).
[Crossref]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

Tekavec, P. F.

Trebino, R.

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[Crossref]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

Turner, D. B.

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—a view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 31–49 (2014).
[Crossref]

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

Valkunas, L.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Van Grondelle, R.

I. H. M. Van Stokkum, D. S. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657, 82–104 (2004).
[Crossref]

Van Stokkum, I. H. M.

I. H. M. Van Stokkum, D. S. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657, 82–104 (2004).
[Crossref]

Volpato, A.

Wilcox, D. E.

Wilk, K. E.

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

Yartsev, A.

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

Yetzbacher, M. K.

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

Yocum, C. F.

J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex,” J. Phys. Chem. Lett. 1, 2774–2780 (2010).
[Crossref]

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

Zhang, T.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

Zigmantas, D.

Acc. Chem. Res. (1)

J. Kim, S. Mukamel, and G. D. Scholes, “Two-dimensional electronic double-quantum coherence spectroscopy,” Acc. Chem. Res. 42, 1375–1384 (2009).
[Crossref]

Ann. Phys. (1)

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines—a view on two-dimensional optical spectroscopy,” Ann. Phys. 526, 31–49 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (2)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).
[Crossref]

Appl. Opt. (1)

Biochim. Biophys. Acta (2)

I. H. M. Van Stokkum, D. S. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochim. Biophys. Acta 1657, 82–104 (2004).
[Crossref]

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex,” Biochim. Biophys. Acta 1847, 241–247 (2015).
[Crossref]

Chem. Phys. (1)

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[Crossref]

Chem. Phys. Lett. (2)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Chem. Soc. Rev. (1)

E. Collini, “Spectroscopic signatures of quantum-coherent energy transfer,” Chem. Soc. Rev. 42, 4932–4947 (2013).
[Crossref]

Faraday Discuss. (1)

J. R. Caram and G. S. Engel, “Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes,” Faraday Discuss. 153, 93–104 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

IEEE Trans. Signal Process. (1)

S. L. Marple, “Computing the discrete-time “analytic” signal via FFT,” IEEE Trans. Signal Process. 47, 2600–2603 (1999).
[Crossref]

J. Chem. Phys. (5)

N. Christensson, Y. Avlasevich, A. Yartsev, K. Müllen, T. Pascher, and T. Pullerits, “Weakly chirped pulses in frequency resolved coherent spectroscopy,” J. Chem. Phys. 132, 174508 (2010).
[Crossref]

A. Nemeth, F. Milota, T. Mančal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations,” J. Chem. Phys. 133, 094505 (2010).
[Crossref]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref]

J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes,” J. Chem. Phys. 139, 224103 (2013).
[Crossref]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells,” J. Chem. Phys. 131, 144510 (2009).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (1)

B. M. Cho, M. K. Yetzbacher, K. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on 2D Fourier transform spectra of multi-level systems,” J. Phys. Chem. A 113, 13287–13299 (2009).
[Crossref]

J. Phys. Chem. B (2)

E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra,” J. Phys. Chem. B 117, 11349–11362 (2013).
[Crossref]

F. V. d. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy,” J. Phys. Chem. B 119, 14660–14667 (2015).
[Crossref]

J. Phys. Chem. Lett. (3)

J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex,” J. Phys. Chem. Lett. 1, 2774–2780 (2010).
[Crossref]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

L. Bolzonello, F. Fassioli, and E. Collini, “Correlated fluctuations and intraband dynamics of J-aggregates revealed by combination of 2DES schemes,” J. Phys. Chem. Lett. 7, 4996–5001 (2016).
[Crossref]

Nat. Commun. (1)

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (2)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[Crossref]

Phys. Rev. Lett. (1)

F. V. de A. Camargo, L. Grimmelsmann, L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum,” Phys. Rev. Lett. 118, 033001 (2017).
[Crossref]

Proc. Natl. Acad. Sci. USA. (1)

E. Harel, A. F. Fidler, G. S. Engel, and B. Alexander Pines, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA. 107, 16444–16447 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[Crossref]

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85, 063103 (2014).
[Crossref]

Other (1)

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic 2DES setup. Abbreviations: SM, spherical mirror; P, prism; DO, bi-dimensional diffractive optical element; DSM, donut spherical mirror; C, chopper; ND, neutral density filter; WP, wedge pair; TS, translational stage; S, sample. Panel (a) describes the pulse sequence and the time intervals definition in a 2DES rephasing experiment. Panel (b) reports a schematic representation of BOXCARS geometry, where Ei are the three interacting fields, ki are the wave vectors, and ELO is the fourth pulse used for heterodyne detection.
Fig. 2.
Fig. 2. Contour plots showing the ratio between the maximum intensity of the FROG traces simulated with chirped pulses and with optimal TL pulses. The results are plotted as a function of the pulse duration (x-axis) and t2 delay (y-axis). In the simulations the chirp reproduces the experimental conditions. The pump pulses E1 and E2 are considered identical and fixed in time, whereas the probe pulse E3 pulse is moved in time. Comparison between the loss of FROG intensity induced by (a) the chirp in CaF2 and fused silica (FS) wedges; (b) the chirp in CaF2 wedges when the AOPDF is set to optimize the compression of the probe pulse (dotted line) or of the pump pulses (solid line); (c) considering different central wavelengths of the pulses, employing CaF2 wedges and compressing the pump pulses.
Fig. 3.
Fig. 3. (a) Laser spectrum used in ZnPc measurements. (b) Pulse profile measured by FROG experiment at optimal TL conditions. (c) FROG experiment in the same conditions but measured at extreme positions of the wedges delay (t2=2  ps), showing a slight chirp. (d) FROG experiment at t2=2  ps after the phase correction of the Dazzler that retrieves the compressed condition.
Fig. 4.
Fig. 4. Procedure for the evaluation of the zero positions of the stages exemplified for E2 with E1 taken as reference. (a) Graphical representation of the matrix F(2); (b) matrix with elements Fjk(2)Fjl(1) with Fjl(1) taken at x1,l=22.65  mm; (c) the solid line is the result of the integration of the absolute value of the matrix in panel (b) along the frequency dimension, the dashed line is the envelope computed with the analytic signal. The insets on the right of panels (a)–(c) show enlargements of the traces in a limited interval of x2 (grey area). (d) Matrix H(2) showing a clear signature only at the (x1,x2) coordinates where the pulses are synchronous. The black line represents the linear fit performed with Eqs. (4) and (5).
Fig. 5.
Fig. 5. Distortions of rephasing 2DES maps arising when effects of phase drift at extreme positions of the delay lines are not accounted for. (a)–(c) 2DES maps obtained using the calibration coefficients before linear drift correction. (d)–(f) The same 2DES maps determined using the calibration coefficients corrected as in Eq. (10). Measures performed on a THF solution of ZnPc. (g) SI of E1 and E2 with t1=150  fs scanned over the entire wedge applying correction in Eq. (10). (h) Phase error between E1 and E2 after the correction.
Fig. 6.
Fig. 6. Distortions of a rephasing 2DES map caused by an inaccurate determination of τLO. Panels (a), (b), and (c) show errors of 15, 0, and +15  fs in retrieving a τLO=489  fs, respectively. The measure was performed on a THF solution of ZnPc at t2=100  fs.
Fig. 7.
Fig. 7. Step-by-step description of the implemented data processing procedure. (a) Raw signal S(a) acquired for a rephasing experiment at a fixed value of t2; (b) signal S(b) is retrieved after applying the correction for the delay from LO; (c) signal S(c) is obtained after the application of the rotating frame approach and the application of a window filter in the t3 domain to remove residual spurious contributions; (d) final 2DES map obtained after Fourier transform along t1, shift from the reference frequency and phase correction. (e) Comparison between pump-probe spectrum (blue line) and projection onto emission axis of the total 2DES spectrum (black line). The measure was performed on a THF solution of ZnPc at t2=100  fs.
Fig. 8.
Fig. 8. Examples of the different responses achievable with the described setup suitably modifying the pulse sequence: (a) pump-probe spectrum; (b) rephasing and (c) non-rephasing 2DES maps at a fixed t2 value (100 fs); (d) 2Q map. The measures were performed on aqueous solutions of H2TPPS J-aggregates at room temperature.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

t(ω)=(1+nCaF2(ω)nair(ω)nCaF2(ω0)nair(ω0))t(ω0),
Hkl(2)=envelope(j|Fjk(2)Fjl(1)|),
z2(x1)=mx1+q,
Glk(a,b,m,q)=ae(x2,kz2(x1,l)b)2=ae(x2,k(mx1,l+q)b)2,
min(a,b,m,q)R4||H(2)G(a,b,m,q)||2,
Ljk(1)(c1)=Fjk(1)eiωjc1(x1,kz1),
maxc1Rj|kLjk(1)(c1)|,
Ljk(1,2)(p)=Fjk(1,2)  eiωj(pτ1,k),
maxpRj|kLjk(1,2)(p)|.
c2,corr=c2(p+1).
S(b)=S^(a)  eiω3τLO/ELO(ω3),
SR(c)=SR(b)eiωreft1,
SNR(c)=SNR(b)  eiωreft1.

Metrics