Abstract

Using frequency-domain nonlinear spectroscopy methods, we find relatively broad (2030  meV) resonances from quantum confined electron–hole pairs in an ensemble of InGaN disks in GaN nanowires that persist without significant broadening up to room temperature in the nonlinear absorption spectrum. Under these growth conditions, we find that the kinetics related to the nonlinear signal are dominated by metastable traps with decay rates of microseconds at low temperatures, as evidenced in part by high-frequency-resolution scans within the broad absorption resonances. The data reveal ultranarrow population pulsation resonances with linewidths that indicate the slow decay rate of the metastable traps.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures

D. S. Chemla and D. A. B. Miller
J. Opt. Soc. Am. B 2(7) 1155-1173 (1985)

Coupling of spontaneous emission from GaN–AlN quantum dots into silver surface plasmons

Arup Neogi, Hadis Morkoç, Takamasa Kuroda, and Atsushi Tackeuchi
Opt. Lett. 30(1) 93-95 (2005)

Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

Ranojoy Bose, Jie Gao, James F. McMillan, Alex D. Williams, and Chee Wei Wong
Opt. Express 17(25) 22474-22483 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
    [Crossref]
  2. S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
    [Crossref]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref]
  4. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [Crossref]
  5. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
    [Crossref]
  6. D. Chemla, “Coherent ultrafast nonlinear optical processes in semiconductor quantum wells,” Solid State Commun. 92, 37–43 (1994).
    [Crossref]
  7. M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cambridge University, 2012).
  8. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
    [Crossref]
  9. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [Crossref]
  10. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
    [Crossref]
  11. B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
    [Crossref]
  12. M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
    [Crossref]
  13. R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
    [Crossref]
  14. H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
    [Crossref]
  15. S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
    [Crossref]
  16. S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
    [Crossref]
  17. N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
    [Crossref]
  18. G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
    [Crossref]
  19. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
    [Crossref]
  20. T. Takagahara, “Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots,” Phys. Rev. B 36, 9293–9296 (1987).
    [Crossref]
  21. G. Dresselhaus, “Effective mass approximation for excitons,” J. Phys. Chem. Solids 1, 14–22 (1956).
    [Crossref]
  22. R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
    [Crossref]
  23. D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
    [Crossref]
  24. K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
    [Crossref]
  25. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
    [Crossref]
  26. S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
    [Crossref]
  27. K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17, 847–858 (2011).
    [Crossref]
  28. L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
    [Crossref]
  29. L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
    [Crossref]
  30. Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
    [Crossref]
  31. L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
    [Crossref]
  32. S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
    [Crossref]
  33. M. Cardona, Solid State Physics Vol. 11: Modulation Spectroscopy (Academic, 1969).
  34. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  35. P. Meystre and M. Sargent, Elements of Quantum Optics (Springer-Verlag, 1990).
  36. P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).
  37. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
    [Crossref]
  38. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [Crossref]
  39. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
    [Crossref]
  40. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
    [Crossref]
  41. C. J. Humphries, “Does In form In-rich clusters in InGaN quantum wells?” Philos. Mag. 87, 1971–1982 (2007).
    [Crossref]
  42. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
    [Crossref]
  43. E. Ejder, “Refractive index of GaN,” Phys. Stat. Sol. A 6, 445–448 (1971).
    [Crossref]
  44. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  45. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [Crossref]
  46. C. Lonsky, P. Thomas, and A. Weller, “Optical dephasing in disordered semiconductors,” Phys. Rev. Lett. 63, 652–655 (1989).
    [Crossref]
  47. R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
    [Crossref]
  48. D. G. Steel and S. C. Rand, “Ultranarrow nonlinear optical resonances in solids,” Phys. Rev. Lett. 55, 2285–2288 (1985).
    [Crossref]
  49. W. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
    [Crossref]
  50. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2010).
  51. T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
    [Crossref]
  52. G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
    [Crossref]
  53. H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
    [Crossref]
  54. Y. Wang, A. Suna, and J. McHugh, “Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 92, 6927–6939 (1990).
    [Crossref]
  55. E. F. Hilinski, P. A. Lucas, and Y. Wang, “A picosecond bleaching study of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 89, 3435–3441 (1988).
    [Crossref]

2015 (2)

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

2014 (5)

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
[Crossref]

2013 (5)

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[Crossref]

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

2012 (1)

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

2011 (2)

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17, 847–858 (2011).
[Crossref]

2010 (2)

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
[Crossref]

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

2009 (1)

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
[Crossref]

2008 (2)

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
[Crossref]

2007 (2)

R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
[Crossref]

C. J. Humphries, “Does In form In-rich clusters in InGaN quantum wells?” Philos. Mag. 87, 1971–1982 (2007).
[Crossref]

2006 (2)

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

2004 (2)

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

2003 (2)

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

2001 (3)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

2000 (4)

N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
[Crossref]

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[Crossref]

1999 (1)

R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
[Crossref]

1998 (1)

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

1994 (1)

D. Chemla, “Coherent ultrafast nonlinear optical processes in semiconductor quantum wells,” Solid State Commun. 92, 37–43 (1994).
[Crossref]

1993 (1)

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

1990 (1)

Y. Wang, A. Suna, and J. McHugh, “Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 92, 6927–6939 (1990).
[Crossref]

1989 (1)

C. Lonsky, P. Thomas, and A. Weller, “Optical dephasing in disordered semiconductors,” Phys. Rev. Lett. 63, 652–655 (1989).
[Crossref]

1988 (1)

E. F. Hilinski, P. A. Lucas, and Y. Wang, “A picosecond bleaching study of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 89, 3435–3441 (1988).
[Crossref]

1987 (1)

T. Takagahara, “Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots,” Phys. Rev. B 36, 9293–9296 (1987).
[Crossref]

1985 (1)

D. G. Steel and S. C. Rand, “Ultranarrow nonlinear optical resonances in solids,” Phys. Rev. Lett. 55, 2285–2288 (1985).
[Crossref]

1971 (1)

E. Ejder, “Refractive index of GaN,” Phys. Stat. Sol. A 6, 445–448 (1971).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

1964 (1)

W. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[Crossref]

1957 (1)

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
[Crossref]

1956 (1)

G. Dresselhaus, “Effective mass approximation for excitons,” J. Phys. Chem. Solids 1, 14–22 (1956).
[Crossref]

Akasaki, I.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Amano, H.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Ando, H.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

Andreev, A. D.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Arakawa, Y.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Arita, M.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Bacher, G.

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

Banerjee, A.

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Berman, P. R.

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

Bertness, K. A.

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17, 847–858 (2011).
[Crossref]

Bhattacharya, P.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
[Crossref]

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[Crossref]

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
[Crossref]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
[Crossref]

Binder, R.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Bonadeo, N.

N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
[Crossref]

Bonadeo, N. H.

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

Botton, G. A.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Bougerol, C.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Cardona, M.

M. Cardona, Solid State Physics Vol. 11: Modulation Spectroscopy (Academic, 1969).

Chan, C. C. S.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Chemla, D.

D. Chemla, “Coherent ultrafast nonlinear optical processes in semiconductor quantum wells,” Solid State Commun. 92, 37–43 (1994).
[Crossref]

Chen, G.

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
[Crossref]

Chichibu, S. F.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Chkraborty, A.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
[Crossref]

Choi, K.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Couillard, M.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Cui, K.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

Das, A.

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[Crossref]

Daudin, B.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Davydov, A. V.

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17, 847–858 (2011).
[Crossref]

Demory, B.

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

DenBaars, S. P.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Deng, H.

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

Deshpande, S.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
[Crossref]

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[Crossref]

Detchprohm, T.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Dresselhaus, G.

G. Dresselhaus, “Effective mass approximation for excitons,” J. Phys. Chem. Solids 1, 14–22 (1956).
[Crossref]

Economou, S. E.

R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
[Crossref]

Ejder, E.

E. Ejder, “Refractive index of GaN,” Phys. Stat. Sol. A 6, 445–448 (1971).
[Crossref]

Elliott, R. J.

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
[Crossref]

Emery, R.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Erland, J.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

Fathololoumi, S.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Ferrio, K.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Fini, P. T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Fischer, A. M.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Forchel, A.

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

Fox, A. M.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Frost, T.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
[Crossref]

Gammon, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
[Crossref]

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

Gayral, B.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Gilet, P.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Glas, F.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Gotoh, H.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

Grossklaus, K. A.

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

Guo, W.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
[Crossref]

Halm, S.

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

Han, J.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Han, X.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Hashemizadeh, S. A.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Haskell, B. A.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Hazari, A.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
[Crossref]

Heo, J.

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[Crossref]

Hilinski, E. F.

E. F. Hilinski, P. A. Lucas, and Y. Wang, “A picosecond bleaching study of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 89, 3435–3441 (1988).
[Crossref]

Hill, T. A.

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

Holmes, M.

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Holmes, M. J.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Hu, Y. Z.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Huang, H.-H.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
[Crossref]

Humphries, C. J.

C. J. Humphries, “Does In form In-rich clusters in InGaN quantum wells?” Philos. Mag. 87, 1971–1982 (2007).
[Crossref]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Jahangir, S.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
[Crossref]

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

Kako, S.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Kamada, H.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

Kamiyama, S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Katzer, D. S.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

Keller, S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Kira, M.

M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cambridge University, 2012).

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Koch, S. W.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cambridge University, 2012).

Kocher, C.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Kociak, M.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Koyama, T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Ku, P.-C.

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

Kundys, D. O.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Ladd, T. D.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2010).

Lamb, W.

W. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[Crossref]

Lee, L.-K.

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

Li, T.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Li, X.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

Lin, Y.-Y.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
[Crossref]

Liu, R. B.

R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
[Crossref]

Liu, X.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

Lonsky, C.

C. Lonsky, P. Thomas, and A. Weller, “Optical dephasing in disordered semiconductors,” Phys. Rev. Lett. 63, 652–655 (1989).
[Crossref]

Lucas, P. A.

E. F. Hilinski, P. A. Lucas, and Y. Wang, “A picosecond bleaching study of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 89, 3435–3441 (1988).
[Crossref]

Mahfoud, Z.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Malinovsky, V. S.

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

Mandl, M.

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
[Crossref]

Martin, R. W.

R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
[Crossref]

McHugh, J.

Y. Wang, A. Suna, and J. McHugh, “Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 92, 6927–6939 (1990).
[Crossref]

Meuret, S.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Meystre, P.

P. Meystre and M. Sargent, Elements of Quantum Optics (Springer-Verlag, 1990).

Mi, Z.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Middleton, P. G.

R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
[Crossref]

Millunchick, J. M.

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

Mirecki-Millunchick, J.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

Mishra, U. K.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Mowbray, D. J.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Mukamel, S.

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[Crossref]

Nakamura, S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Nguyen, H. P. T.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Nikoobakht, B.

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

O’Donnell, K. P.

R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
[Crossref]

Oeheler, F.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Off, J.

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

Oliver, R. A.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Onuma, T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Parbrook, P. J.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Park, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Piermarocchi, C.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

Podemski, P.

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Ponce, F. A.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Press, D.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Rand, S. C.

D. G. Steel and S. C. Rand, “Ultranarrow nonlinear optical resonances in solids,” Phys. Rev. Lett. 55, 2285–2288 (1985).
[Crossref]

Reid, B. P. L.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Sanford, N. A.

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17, 847–858 (2011).
[Crossref]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

Sargent, M.

P. Meystre and M. Sargent, Elements of Quantum Optics (Springer-Verlag, 1990).

Schimpke, T.

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Scholz, F.

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

Schomig, H.

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

Sham, L. J.

R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
[Crossref]

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Singh, J.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
[Crossref]

Skolnick, M. S.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

Sota, T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Speck, J. S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Steel, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
[Crossref]

Steel, D. G.

R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
[Crossref]

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

D. G. Steel and S. C. Rand, “Ultranarrow nonlinear optical resonances in solids,” Phys. Rev. Lett. 55, 2285–2288 (1985).
[Crossref]

Stievater, T. H.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

Strassburg, M.

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
[Crossref]

Suna, A.

Y. Wang, A. Suna, and J. McHugh, “Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 92, 6927–6939 (1990).
[Crossref]

Takagahara, T.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

T. Takagahara, “Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots,” Phys. Rev. B 36, 9293–9296 (1987).
[Crossref]

Taylor, R. A.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Temmyo, J.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

Teng, C.-H.

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

Thomas, P.

C. Lonsky, P. Thomas, and A. Weller, “Optical dephasing in disordered semiconductors,” Phys. Rev. Lett. 63, 652–655 (1989).
[Crossref]

Tourbot, G.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Uedono, A.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Van der Stricht, W.

R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Wada, O.

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Wang, H.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

Wang, T.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Wang, Y.

Y. Wang, A. Suna, and J. McHugh, “Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 92, 6927–6939 (1990).
[Crossref]

E. F. Hilinski, P. A. Lucas, and Y. Wang, “A picosecond bleaching study of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 89, 3435–3441 (1988).
[Crossref]

Wei, Q. Y.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Weller, A.

C. Lonsky, P. Thomas, and A. Weller, “Optical dephasing in disordered semiconductors,” Phys. Rev. Lett. 63, 652–655 (1989).
[Crossref]

Wells, J.-P. R.

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

Wetzel, C.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Wright, S. A.

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

Wu, Y.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

Wu, Y.-R.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
[Crossref]

Yamaguchi, S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Yamamoto, Y.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

Yan, L.

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

Zagonel, L. F.

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Zhang, B.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

Zhang, L.

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Zhang, M.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
[Crossref]

Zhang, S.

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Zhu, T.

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (2)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref]

Appl. Phys. Lett. (6)

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105, 141109 (2014).
[Crossref]

B. P. L. Reid, C. Kocher, T. Zhu, F. Oeheler, R. Emery, C. C. S. Chan, R. A. Oliver, and R. A. Taylor, “Observation of Rabi oscillations in a non-polar InGaN quantum dot,” Appl. Phys. Lett. 104, 263108 (2014).
[Crossref]

R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett. 74, 263–265 (1999).
[Crossref]

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650  nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
[Crossref]

L. Zhang, C.-H. Teng, T. A. Hill, L.-K. Lee, P.-C. Ku, and H. Deng, “Single photon emission from site-controlled InGaN/GaN quantum dots,” Appl. Phys. Lett. 103, 192114 (2013).
[Crossref]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Jahangir, T. Schimpke, M. Strassburg, K. A. Grossklaus, J. M. Millunchick, and P. Bhattacharya, “Red-emitting (λ = 610  nm) In0.51Ga0.49N/GaN disk-in-nanowire light emitting diodes on silicon,” IEEE J. Quantum Electron. 50, 530–537 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17, 847–858 (2011).
[Crossref]

J. Appl. Phys. (2)

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” J. Appl. Phys. 105, 013117 (2009).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

J. Chem. Phys. (2)

Y. Wang, A. Suna, and J. McHugh, “Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 92, 6927–6939 (1990).
[Crossref]

E. F. Hilinski, P. A. Lucas, and Y. Wang, “A picosecond bleaching study of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs,” J. Chem. Phys. 89, 3435–3441 (1988).
[Crossref]

J. Cryst. Growth (1)

K. A. Grossklaus, A. Banerjee, S. Jahangir, P. Bhattacharya, and J. M. Millunchick, “Misorientation defects in coalesced self-catalyzed GaN nanowires,” J. Cryst. Growth 371, 142–147 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

G. Dresselhaus, “Effective mass approximation for excitons,” J. Phys. Chem. Solids 1, 14–22 (1956).
[Crossref]

Nano Lett. (5)

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10, 3355–3359 (2010).
[Crossref]

L. Yan, S. Jahangir, S. A. Wright, B. Nikoobakht, P. Bhattacharya, and J. M. Millunchick, “Structural and optical properties of disc-in-wire InGaN/GaN LEDs,” Nano Lett. 15, 1535–1539 (2015).
[Crossref]

S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, and P. Bhattacharya, “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett. 15, 1647–1653 (2015).
[Crossref]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2014).
[Crossref]

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11, 1919–1924 (2011).
[Crossref]

Nanotechnology (1)

G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, and B. Daudin, “Growth mechanisms and properties of InGaN insertions in GaN nanowires,” Nanotechnology 23, 135703 (2012).
[Crossref]

Nat. Commun. (1)

S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, “Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire,” Nat. Commun. 4, 1675 (2013).
[Crossref]

Nat. Mater. (1)

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chkraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5, 810–816 (2006).
[Crossref]

Nature (1)

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[Crossref]

New J. Phys. (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Philos. Mag. (1)

C. J. Humphries, “Does In form In-rich clusters in InGaN quantum wells?” Philos. Mag. 87, 1971–1982 (2007).
[Crossref]

Phys. Rev. (2)

W. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[Crossref]

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
[Crossref]

Phys. Rev. B (4)

D. O. Kundys, J.-P. R. Wells, A. D. Andreev, S. A. Hashemizadeh, T. Wang, P. J. Parbrook, A. M. Fox, D. J. Mowbray, and M. S. Skolnick, “Resolution of discrete excited states in InxGa1-xN multiple quantum wells using degenerate four-wave mixing,” Phys. Rev. B 73, 165309 (2006).
[Crossref]

L. Zhang, T. A. Hill, C.-H. Teng, B. Demory, P.-C. Ku, and H. Deng, “Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots,” Phys. Rev. B 90, 245311 (2014).
[Crossref]

R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, “Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots,” Phys. Rev. B 75, 085322 (2007).
[Crossref]

T. Takagahara, “Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots,” Phys. Rev. B 36, 9293–9296 (1987).
[Crossref]

Phys. Rev. Lett. (7)

D. G. Steel and S. C. Rand, “Ultranarrow nonlinear optical resonances in solids,” Phys. Rev. Lett. 55, 2285–2288 (1985).
[Crossref]

C. Lonsky, P. Thomas, and A. Weller, “Optical dephasing in disordered semiconductors,” Phys. Rev. Lett. 63, 652–655 (1989).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993).
[Crossref]

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton Rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[Crossref]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref]

H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92, 106802 (2004).
[Crossref]

M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa, “Measurement of an exciton Rabi rotation in a single GaN/AlxGa1-xN nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control,” Phys. Rev. Lett. 111, 057401 (2013).
[Crossref]

Phys. Stat. Sol. A (1)

E. Ejder, “Refractive index of GaN,” Phys. Stat. Sol. A 6, 445–448 (1971).
[Crossref]

Phys. Stat. Sol. B (1)

N. Bonadeo, G. Chen, D. Gammon, and D. Steel, “Single quantum dot optical spectroscopy,” Phys. Stat. Sol. B 221, 5–18 (2000).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Science (4)

G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[Crossref]

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref]

Solid State Commun. (1)

D. Chemla, “Coherent ultrafast nonlinear optical processes in semiconductor quantum wells,” Solid State Commun. 92, 37–43 (1994).
[Crossref]

Other (6)

M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cambridge University, 2012).

M. Cardona, Solid State Physics Vol. 11: Modulation Spectroscopy (Academic, 1969).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

P. Meystre and M. Sargent, Elements of Quantum Optics (Springer-Verlag, 1990).

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Photoluminescence (PL) and photoluminescence excitation (PLE) at 10 K. The inset shows similar PL at room temperature from a similar sample ensemble, the shift reflecting the role of heterogeneity.

Fig. 2.
Fig. 2.

Modulated absorption, where a more positive signal means reduced absorption (increase in transmission), showing strong excitonic features at 300 K and 10 K. There are variations in the relative positions and strengths of the resonances at 300 K and 10 K because (1) the two spectra are taken at approximately the same sample region, but variations due to sample expansion and contraction may shift the probed sample position slightly at the two different temperatures, and (2) an overall redshift of the spectra occurs as the temperature increases, as reported in Ref. [26]. The constant negative offset is subtracted. Inset: 10 K modulated absorption data with negative offset included.

Fig. 3.
Fig. 3.

Comparison of the residuals of the Gaussian fit to the PL and exponential fit to the PLE and modulated absorption (abs.) data at 10 K. The three data sets were taken at slightly different sample regions.

Fig. 4.
Fig. 4.

Nondegenerate differential transmission. The wavelength of the nonscanning laser is identified by the arrow. The results show the nondegenerate spectrum is independent of the wavelength of the nonscanning laser. Each scan is plotted on the same scale.

Fig. 5.
Fig. 5.

Coherent population pulsation component of the nondegenerate nonlinear absorption spectrum taken using the methods in Ref. [48]. The ω 1 beam is fixed at 2.01 eV in this case.

Fig. 6.
Fig. 6.

Arrhenius plots taken at different regions of the sample, represented by the different colors in the plot. The error bars are from the error in the mean of the measurement.

Fig. 7.
Fig. 7.

2D cross section of DINW. A gradient in the internal electric field is also shown due to strain effects in the system [2830] (magenta is the highest electric field magnitude, with blue/yellow the lowest).

Metrics