J. Lages, R. Giust, and J. M. Vigoureux, “Composition law for polarizers,” Phys. Rev. A 78, 033810 (2008).
[Crossref]
T. Tudor, “Interaction of light with polarization devices: a vectorial Pauli algebraic approach,” Proc. SPIE 7008, 700804 (2008).
T. Tudor, “Interaction of light with the polarization devices: a vectorial Pauli algebraic approach,” J. Phys. A 41, 415303 (2008).
[Crossref]
J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. 40, 1–47 (2007).
[Crossref]
C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119 (2006).
B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express 12, 4941–4958 (2004).
[Crossref]
S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B 6, S455–S472 (2004).
[Crossref]
J. A. Morales and E. Navarro, “Minkovskian decription of polarized light and polarizers,” Phys. Rev. E 67, 026605 (2003).
[Crossref]
S. Başkal and Y. S. Kim, “Wigner rotations in laser cavities,” Phys. Rev. E 66, 026604 (2002).
[Crossref]
Y. S. Kim, “Lorentz group in polarization optics,” J. Opt. B 2, R1–R5 (2000).
[Crossref]
J. J. Monzón and L. L. Sánchez-Soto, “Lossless multilayers and Lorentz transformations: more than an analogy,” Opt. Commun. 162, 1–6 (1999).
[Crossref]
D. Han, Y. S. Kim, and M. E. Noz, “Stokes parameters as a Minkowskian four-vector,” Phys. Rev. E 56, 6065–6076 (1997).
[Crossref]
T. Opatrný and J. Peřina, “Non-image-forming polarization optical devices and Lorentz transformations—an analogy,” Phys. Lett. A 181, 199–202 (1993).
[Crossref]
J. M. Vigoureux and Ph. Grossel, “A relativistic-like presentation of optics in stratified planar media,” Am. J. Phys. 61, 707–712 (1993).
[Crossref]
M. Kitano and T. Yabuzaki, “Observation of Lorentz-group Berry phases in polarization optics,” Phys. Lett. A 142, 321–325 (1989).
[Crossref]
D. Han, E. E. Hardekopl, and Y. S. Kim, “Thomas precession and squeezed states of light,” Phys. Rev. A 39, 1269–1276 (1989).
[Crossref]
A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group,” Found. Phys. Lett. 1, 57–89 (1988).
[Crossref]
H. Takenaka, “A unified formalism for polarization optics by using group theory,” Nouv. Rev. Opt. 4, 37–41 (1973).
[Crossref]
S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B 6, S455–S472 (2004).
[Crossref]
S. Başkal and Y. S. Kim, “Wigner rotations in laser cavities,” Phys. Rev. E 66, 026604 (2002).
[Crossref]
S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).
C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119 (2006).
J. N. Damask, Polarization Optics in Telecommunications (Springer, 2005), p. 306.
C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119 (2006).
R. P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1977), Vol. I, Chap. 15.
S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B 6, S455–S472 (2004).
[Crossref]
J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. 40, 1–47 (2007).
[Crossref]
J. J. Gil, R. Ossikovski, and I. San José, “Singular Mueller matrices,” J. Opt. Soc. Am. A 33, 600–609 (2016).
[Crossref]
R. Ossikovski, J. J. Gil, and I. San José, “Poincaré sphere mapping by Mueller matrices,” J. Opt. Soc. Am. A 30, 2291–2305 (2013).
[Crossref]
C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119 (2006).
J. J. Gil and R. Ossikovski, Polarizerd Light and the Mueller Matrix Approach (CRC Press, 2016).
J. Lages, R. Giust, and J. M. Vigoureux, “Composition law for polarizers,” Phys. Rev. A 78, 033810 (2008).
[Crossref]
J. M. Vigoureux and Ph. Grossel, “A relativistic-like presentation of optics in stratified planar media,” Am. J. Phys. 61, 707–712 (1993).
[Crossref]
D. Han, Y. S. Kim, and M. E. Noz, “Stokes parameters as a Minkowskian four-vector,” Phys. Rev. E 56, 6065–6076 (1997).
[Crossref]
D. Han, E. E. Hardekopl, and Y. S. Kim, “Thomas precession and squeezed states of light,” Phys. Rev. A 39, 1269–1276 (1989).
[Crossref]
D. Han, E. E. Hardekopl, and Y. S. Kim, “Thomas precession and squeezed states of light,” Phys. Rev. A 39, 1269–1276 (1989).
[Crossref]
S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B 6, S455–S472 (2004).
[Crossref]
S. Başkal and Y. S. Kim, “Wigner rotations in laser cavities,” Phys. Rev. E 66, 026604 (2002).
[Crossref]
Y. S. Kim, “Lorentz group in polarization optics,” J. Opt. B 2, R1–R5 (2000).
[Crossref]
D. Han, Y. S. Kim, and M. E. Noz, “Stokes parameters as a Minkowskian four-vector,” Phys. Rev. E 56, 6065–6076 (1997).
[Crossref]
D. Han, E. E. Hardekopl, and Y. S. Kim, “Thomas precession and squeezed states of light,” Phys. Rev. A 39, 1269–1276 (1989).
[Crossref]
M. Kitano and T. Yabuzaki, “Observation of Lorentz-group Berry phases in polarization optics,” Phys. Lett. A 142, 321–325 (1989).
[Crossref]
J. Lages, R. Giust, and J. M. Vigoureux, “Composition law for polarizers,” Phys. Rev. A 78, 033810 (2008).
[Crossref]
R. P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1977), Vol. I, Chap. 15.
M. C. Møller, The Theory of Relativity (Clarendon, 1952).
J. J. Monzón and L. L. Sánchez-Soto, “Lossless multilayers and Lorentz transformations: more than an analogy,” Opt. Commun. 162, 1–6 (1999).
[Crossref]
J. A. Morales and E. Navarro, “Minkovskian decription of polarized light and polarizers,” Phys. Rev. E 67, 026605 (2003).
[Crossref]
J. A. Morales and E. Navarro, “Minkovskian decription of polarized light and polarizers,” Phys. Rev. E 67, 026605 (2003).
[Crossref]
S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B 6, S455–S472 (2004).
[Crossref]
D. Han, Y. S. Kim, and M. E. Noz, “Stokes parameters as a Minkowskian four-vector,” Phys. Rev. E 56, 6065–6076 (1997).
[Crossref]
T. Opatrný and J. Peřina, “Non-image-forming polarization optical devices and Lorentz transformations—an analogy,” Phys. Lett. A 181, 199–202 (1993).
[Crossref]
J. J. Gil, R. Ossikovski, and I. San José, “Singular Mueller matrices,” J. Opt. Soc. Am. A 33, 600–609 (2016).
[Crossref]
R. Ossikovski, J. J. Gil, and I. San José, “Poincaré sphere mapping by Mueller matrices,” J. Opt. Soc. Am. A 30, 2291–2305 (2013).
[Crossref]
J. J. Gil and R. Ossikovski, Polarizerd Light and the Mueller Matrix Approach (CRC Press, 2016).
P. Pellat-Finet, “What is common to both polarization optics and relativistic kinematics?” Optik 90, 101–106 (1992).
T. Opatrný and J. Peřina, “Non-image-forming polarization optical devices and Lorentz transformations—an analogy,” Phys. Lett. A 181, 199–202 (1993).
[Crossref]
J. J. Gil, R. Ossikovski, and I. San José, “Singular Mueller matrices,” J. Opt. Soc. Am. A 33, 600–609 (2016).
[Crossref]
R. Ossikovski, J. J. Gil, and I. San José, “Poincaré sphere mapping by Mueller matrices,” J. Opt. Soc. Am. A 30, 2291–2305 (2013).
[Crossref]
C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119 (2006).
J. J. Monzón and L. L. Sánchez-Soto, “Lossless multilayers and Lorentz transformations: more than an analogy,” Opt. Commun. 162, 1–6 (1999).
[Crossref]
R. P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1977), Vol. I, Chap. 15.
R. D. Sard, Relativistic Mechanics (Benjamin, 1970).
H. Takenaka, “A unified formalism for polarization optics by using group theory,” Nouv. Rev. Opt. 4, 37–41 (1973).
[Crossref]
T. Tudor, “On a quasi-relativistic formula in polarization theory,” Opt. Lett. 40, 693–696 (2015).
[Crossref]
T. Tudor, “Gyrovectors and degree of polarization surfaces in polarization theory,” J. Opt. Soc. Am. B 32, 2528–2535 (2015).
[Crossref]
T. Tudor and V. Manea, “Ellipsoid of the polarization degree: a vectorial pure operatorial Pauli algebraic approach,” J. Opt. Soc. Am. B 28, 596–601 (2011).
[Crossref]
T. Tudor and V. Manea, “Symmetry between partially polarized light and partial polarizers,” J. Mod. Opt. 58, 845–852 (2011).
[Crossref]
T. Tudor, “Interaction of light with polarization devices: a vectorial Pauli algebraic approach,” Proc. SPIE 7008, 700804 (2008).
T. Tudor, “Interaction of light with the polarization devices: a vectorial Pauli algebraic approach,” J. Phys. A 41, 415303 (2008).
[Crossref]
A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group,” Found. Phys. Lett. 1, 57–89 (1988).
[Crossref]
A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity (World Scientific, 2008).
J. Lages, R. Giust, and J. M. Vigoureux, “Composition law for polarizers,” Phys. Rev. A 78, 033810 (2008).
[Crossref]
J. M. Vigoureux and Ph. Grossel, “A relativistic-like presentation of optics in stratified planar media,” Am. J. Phys. 61, 707–712 (1993).
[Crossref]
J. M. Vigoureux, “Use of Einstein’s addition law in studies of reflection by stratified planar structures,” J. Opt. Soc. Am. A 9, 1313–1319 (1992).
[Crossref]
M. Kitano and T. Yabuzaki, “Observation of Lorentz-group Berry phases in polarization optics,” Phys. Lett. A 142, 321–325 (1989).
[Crossref]
J. M. Vigoureux and Ph. Grossel, “A relativistic-like presentation of optics in stratified planar media,” Am. J. Phys. 61, 707–712 (1993).
[Crossref]
J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. 40, 1–47 (2007).
[Crossref]
A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group,” Found. Phys. Lett. 1, 57–89 (1988).
[Crossref]
T. Tudor and V. Manea, “Symmetry between partially polarized light and partial polarizers,” J. Mod. Opt. 58, 845–852 (2011).
[Crossref]
Y. S. Kim, “Lorentz group in polarization optics,” J. Opt. B 2, R1–R5 (2000).
[Crossref]
S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B 6, S455–S472 (2004).
[Crossref]
S. V. Savenkov, O. Sydoruk, and R. S. Muttiah, “Conditions for polarization elements to be dichroic and birefringent,” J. Opt. Soc. Am. A 22, 1447–1452 (2005).
[Crossref]
R. Ossikovski, J. J. Gil, and I. San José, “Poincaré sphere mapping by Mueller matrices,” J. Opt. Soc. Am. A 30, 2291–2305 (2013).
[Crossref]
J. M. Vigoureux, “Use of Einstein’s addition law in studies of reflection by stratified planar structures,” J. Opt. Soc. Am. A 9, 1313–1319 (1992).
[Crossref]
J. J. Gil, R. Ossikovski, and I. San José, “Singular Mueller matrices,” J. Opt. Soc. Am. A 33, 600–609 (2016).
[Crossref]
T. Tudor, “Interaction of light with the polarization devices: a vectorial Pauli algebraic approach,” J. Phys. A 41, 415303 (2008).
[Crossref]
C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119 (2006).
H. Takenaka, “A unified formalism for polarization optics by using group theory,” Nouv. Rev. Opt. 4, 37–41 (1973).
[Crossref]
J. J. Monzón and L. L. Sánchez-Soto, “Lossless multilayers and Lorentz transformations: more than an analogy,” Opt. Commun. 162, 1–6 (1999).
[Crossref]
O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
[Crossref]
B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express 12, 4941–4958 (2004).
[Crossref]
S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).
P. Pellat-Finet, “What is common to both polarization optics and relativistic kinematics?” Optik 90, 101–106 (1992).
T. Opatrný and J. Peřina, “Non-image-forming polarization optical devices and Lorentz transformations—an analogy,” Phys. Lett. A 181, 199–202 (1993).
[Crossref]
M. Kitano and T. Yabuzaki, “Observation of Lorentz-group Berry phases in polarization optics,” Phys. Lett. A 142, 321–325 (1989).
[Crossref]
J. Lages, R. Giust, and J. M. Vigoureux, “Composition law for polarizers,” Phys. Rev. A 78, 033810 (2008).
[Crossref]
D. Han, E. E. Hardekopl, and Y. S. Kim, “Thomas precession and squeezed states of light,” Phys. Rev. A 39, 1269–1276 (1989).
[Crossref]
S. Başkal and Y. S. Kim, “Wigner rotations in laser cavities,” Phys. Rev. E 66, 026604 (2002).
[Crossref]
D. Han, Y. S. Kim, and M. E. Noz, “Stokes parameters as a Minkowskian four-vector,” Phys. Rev. E 56, 6065–6076 (1997).
[Crossref]
J. A. Morales and E. Navarro, “Minkovskian decription of polarized light and polarizers,” Phys. Rev. E 67, 026605 (2003).
[Crossref]
T. Tudor, “Interaction of light with polarization devices: a vectorial Pauli algebraic approach,” Proc. SPIE 7008, 700804 (2008).
R. P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1977), Vol. I, Chap. 15.
A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity (World Scientific, 2008).
R. D. Sard, Relativistic Mechanics (Benjamin, 1970).
M. C. Møller, The Theory of Relativity (Clarendon, 1952).
J. J. Gil and R. Ossikovski, Polarizerd Light and the Mueller Matrix Approach (CRC Press, 2016).
J. N. Damask, Polarization Optics in Telecommunications (Springer, 2005), p. 306.