Abstract

An alternative application of the Fourier transform spectroscopy (FTS) principles and techniques is proposed. Registration of hyperspectral holograms in incoherent light by using FTS is suggested. This work generalizes and develops our previous results on registration of hyperspectral Fresnel’s and image plane holograms. Theoretical and experimental results are provided and discussed. The proposed method is applied to the problems of digital holographic microscopy, including speckle noise reduction, hyperspectral imaging, and coloring and optical profiling. A major advantage of the proposed method is that it allows simultaneous recovery of the amplitude, the phase, and the spectral frequency σ of the wave field in a single registration process.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally-spatial fourier-holography

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko
Opt. Express 21(21) 24985-24990 (2013)

Incoherent off-axis Fourier triangular color holography

Yuhong Wan, Tianlong Man, and Dayong Wang
Opt. Express 22(7) 8565-8573 (2014)

Applications of short-coherence digital holography in microscopy

Lluís Martínez-León, Giancarlo Pedrini, and Wolfgang Osten
Appl. Opt. 44(19) 3977-3984 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Spectrally-spatial Fourier-holography,” Opt. Express 21, 24985–24990 (2013).
    [Crossref]
  2. G. S. Kalenkov, S. Kalenkov, and A. Shtanko, “Hyperspectral holographic Fourier-microscopy,” in Imaging and Applied Optics (Optical Society of America, 2014), paper DTh3B.7.
  3. R. Castillo and J. Rodríguez-Fernández, Fourier Transform Infrared Spectroscopy: Modern Applications in Biotechnology and Biological Sciences (Nova Science, 2014).
  4. M. Hart, D. Vass, and M. Begbie, “Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy,” Appl. Opt. 37, 1764–1769 (1998).
    [Crossref]
  5. J. Allington-Smith, “Science perspectives for 3D spectroscopy,” in Proceedings of the ESO Workshop held in Garching, Eso Astrophysics Symposia European Southern Observatory, M. Kissler-Patig, J. R. Walsh, and M. M. Roth, eds., 1st ed. (Springer-Verlag, 2007).
  6. A. A. Bunaciu, S. Fleschin, and H. Y. Aboul-Enein, “Infrared microspectroscopy applications—review,” Curr. Anal. Chem. 10, 132–139 (2014).
  7. A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).
  8. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [Crossref]
  9. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  10. N. Vlasov, S. Kalenkov, and A. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys. 6, 401–403 (1996).
  11. M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  12. I. Yamaguchi, T. Matsumura, and J. Ichi Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108–1110 (2002).
    [Crossref]
  13. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005).
    [Crossref]
  14. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
  15. J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).
  16. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [Crossref]
  17. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer-Verlag, 2011).
  18. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011).
    [Crossref]
  19. T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
    [Crossref]
  20. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy–holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
    [Crossref]
  21. R. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  22. S. G. Kalenkov, G. S. Kalenkov, and A. Shtanko, “Hyperspectral image plane holography in white light applied to quantitative phase microscopy,” in Imaging and Applied Optics (Optical Society of America, 2016), paper DW2H.3.
  23. G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, “Hyperspectral holographic Fourier-microscopy,” Quantum Electron. 45, 333–338 (2015).
    [Crossref]
  24. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral digital holography of microobjects,” Proc. SPIE 9386, 938604 (2015).
    [Crossref]
  25. G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtanko, “Holographic Fourier transform spectroscopy of biosamples,” in Light, Energy and the Environment (Optical Society of America, 2016), paper FTu2E.7.

2016 (1)

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

2015 (3)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, “Hyperspectral holographic Fourier-microscopy,” Quantum Electron. 45, 333–338 (2015).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral digital holography of microobjects,” Proc. SPIE 9386, 938604 (2015).
[Crossref]

2014 (3)

A. A. Bunaciu, S. Fleschin, and H. Y. Aboul-Enein, “Infrared microspectroscopy applications—review,” Curr. Anal. Chem. 10, 132–139 (2014).

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

2013 (1)

2011 (2)

2010 (1)

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

2005 (1)

2002 (1)

2000 (1)

1999 (1)

1998 (2)

1996 (1)

N. Vlasov, S. Kalenkov, and A. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys. 6, 401–403 (1996).

Aboul-Enein, H. Y.

A. A. Bunaciu, S. Fleschin, and H. Y. Aboul-Enein, “Infrared microspectroscopy applications—review,” Curr. Anal. Chem. 10, 132–139 (2014).

Allington-Smith, J.

J. Allington-Smith, “Science perspectives for 3D spectroscopy,” in Proceedings of the ESO Workshop held in Garching, Eso Astrophysics Symposia European Southern Observatory, M. Kissler-Patig, J. R. Walsh, and M. M. Roth, eds., 1st ed. (Springer-Verlag, 2007).

Babacan, S.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Begbie, M.

Bell, R.

R. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

Bonin, T.

Brown, W.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

Bulatov, M. F.

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

Bunaciu, A. A.

A. A. Bunaciu, S. Fleschin, and H. Y. Aboul-Enein, “Infrared microspectroscopy applications—review,” Curr. Anal. Chem. 10, 132–139 (2014).

Carney, P.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Castillo, R.

R. Castillo and J. Rodríguez-Fernández, Fourier Transform Infrared Spectroscopy: Modern Applications in Biotechnology and Biological Sciences (Nova Science, 2014).

Cuche, E.

Depeursinge, C.

Ding, H.

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]

Ferraro, P.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer-Verlag, 2011).

Fleschin, S.

A. A. Bunaciu, S. Fleschin, and H. Y. Aboul-Enein, “Infrared microspectroscopy applications—review,” Curr. Anal. Chem. 10, 132–139 (2014).

Fujimoto, J. G.

Gillette, M. U.

Goddard, L.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Hart, M.

Hillmann, D.

Hüttmann, G.

Ichi Kato, J.

Ippen, E. P.

Kalenkov, G. S.

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral digital holography of microobjects,” Proc. SPIE 9386, 938604 (2015).
[Crossref]

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, “Hyperspectral holographic Fourier-microscopy,” Quantum Electron. 45, 333–338 (2015).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Spectrally-spatial Fourier-holography,” Opt. Express 21, 24985–24990 (2013).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. Shtanko, “Hyperspectral image plane holography in white light applied to quantitative phase microscopy,” in Imaging and Applied Optics (Optical Society of America, 2016), paper DW2H.3.

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtanko, “Holographic Fourier transform spectroscopy of biosamples,” in Light, Energy and the Environment (Optical Society of America, 2016), paper FTu2E.7.

G. S. Kalenkov, S. Kalenkov, and A. Shtanko, “Hyperspectral holographic Fourier-microscopy,” in Imaging and Applied Optics (Optical Society of America, 2014), paper DTh3B.7.

Kalenkov, S.

N. Vlasov, S. Kalenkov, and A. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys. 6, 401–403 (1996).

G. S. Kalenkov, S. Kalenkov, and A. Shtanko, “Hyperspectral holographic Fourier-microscopy,” in Imaging and Applied Optics (Optical Society of America, 2014), paper DTh3B.7.

Kalenkov, S. G.

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, “Hyperspectral holographic Fourier-microscopy,” Quantum Electron. 45, 333–338 (2015).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral digital holography of microobjects,” Proc. SPIE 9386, 938604 (2015).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Spectrally-spatial Fourier-holography,” Opt. Express 21, 24985–24990 (2013).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. Shtanko, “Hyperspectral image plane holography in white light applied to quantitative phase microscopy,” in Imaging and Applied Optics (Optical Society of America, 2016), paper DW2H.3.

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtanko, “Holographic Fourier transform spectroscopy of biosamples,” in Light, Energy and the Environment (Optical Society of America, 2016), paper FTu2E.7.

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

Kärtner, F. X.

Kim, J.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

Kim, M.

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Kim, T.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Koch, P.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

Levinson, H.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

Li, X. D.

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

Lührs, C.

Machikhin, A. S.

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

Maher, J. R.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

Marquet, P.

Martínez-León, L.

Matsumura, T.

Millet, L.

Mir, M.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011).
[Crossref]

Morgner, U.

Osten, W.

Pedrini, G.

Pitris, C.

Polschikova, O. V.

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

Popescu, G.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011).
[Crossref]

Pozhar, V. E.

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

Ramazanova, A. G.

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

Rodríguez-Fernández, J.

R. Castillo and J. Rodríguez-Fernández, Fourier Transform Infrared Spectroscopy: Modern Applications in Biotechnology and Biological Sciences (Nova Science, 2014).

Rogers, J.

Sazhin, A.

N. Vlasov, S. Kalenkov, and A. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys. 6, 401–403 (1996).

Shtan’ko, A. E.

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, “Hyperspectral holographic Fourier-microscopy,” Quantum Electron. 45, 333–338 (2015).
[Crossref]

Shtanko, A.

S. G. Kalenkov, G. S. Kalenkov, and A. Shtanko, “Hyperspectral image plane holography in white light applied to quantitative phase microscopy,” in Imaging and Applied Optics (Optical Society of America, 2016), paper DW2H.3.

G. S. Kalenkov, S. Kalenkov, and A. Shtanko, “Hyperspectral holographic Fourier-microscopy,” in Imaging and Applied Optics (Optical Society of America, 2014), paper DTh3B.7.

Shtanko, A. E.

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral digital holography of microobjects,” Proc. SPIE 9386, 938604 (2015).
[Crossref]

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Spectrally-spatial Fourier-holography,” Opt. Express 21, 24985–24990 (2013).
[Crossref]

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtanko, “Holographic Fourier transform spectroscopy of biosamples,” in Light, Energy and the Environment (Optical Society of America, 2016), paper FTu2E.7.

Unarunotai, S.

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

Vass, D.

Vlasov, N.

N. Vlasov, S. Kalenkov, and A. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys. 6, 401–403 (1996).

Wang, Z.

Wax, A.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer-Verlag, 2011).

Yamaguchi, I.

Zalevsky, Z.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer-Verlag, 2011).

Zhang, T.

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Appl. Opt. (3)

Curr. Anal. Chem. (1)

A. A. Bunaciu, S. Fleschin, and H. Y. Aboul-Enein, “Infrared microspectroscopy applications—review,” Curr. Anal. Chem. 10, 132–139 (2014).

J. Biomed. Opt. (1)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).

Laser Phys. (1)

N. Vlasov, S. Kalenkov, and A. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys. 6, 401–403 (1996).

Nat. Photonics (1)

T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (1)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60, R211 (2015).

Phys. Wave Phenom. (1)

A. S. Machikhin, O. V. Polschikova, A. G. Ramazanova, V. E. Pozhar, and M. F. Bulatov, “Spectral holographic imaging of transparent objects in Mach–Zehnder interferometer using acousto-optic filter,” Phys. Wave Phenom. 24, 129–134 (2016).

Proc. SPIE (1)

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral digital holography of microobjects,” Proc. SPIE 9386, 938604 (2015).
[Crossref]

Quantum Electron. (1)

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, “Hyperspectral holographic Fourier-microscopy,” Quantum Electron. 45, 333–338 (2015).
[Crossref]

SPIE Rev. (1)

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Other (7)

G. S. Kalenkov, S. Kalenkov, and A. Shtanko, “Hyperspectral holographic Fourier-microscopy,” in Imaging and Applied Optics (Optical Society of America, 2014), paper DTh3B.7.

R. Castillo and J. Rodríguez-Fernández, Fourier Transform Infrared Spectroscopy: Modern Applications in Biotechnology and Biological Sciences (Nova Science, 2014).

J. Allington-Smith, “Science perspectives for 3D spectroscopy,” in Proceedings of the ESO Workshop held in Garching, Eso Astrophysics Symposia European Southern Observatory, M. Kissler-Patig, J. R. Walsh, and M. M. Roth, eds., 1st ed. (Springer-Verlag, 2007).

R. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

S. G. Kalenkov, G. S. Kalenkov, and A. Shtanko, “Hyperspectral image plane holography in white light applied to quantitative phase microscopy,” in Imaging and Applied Optics (Optical Society of America, 2016), paper DW2H.3.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer-Verlag, 2011).

G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtanko, “Holographic Fourier transform spectroscopy of biosamples,” in Light, Energy and the Environment (Optical Society of America, 2016), paper FTu2E.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Principal scheme of the interferometer for hyperspectral holograms registration. Polychromatic light source—1; beam splitter cubes—2,3; mirrors—4,5; CCD/CMOS sensor—6. obj, object under the study; L, objective.

Fig. 2.
Fig. 2.

Optical schemes of recording hyperspectral holograms of (a, b) transparent and (c) reflective objects. (a),(c) Fresnel free-space registration, (b) image plane registration, (d) depth of the recording scene for the case of reflection.

Fig. 3.
Fig. 3.

Hyperspectral amplitude image of the standard line-target No. 3. Spatial resolution corresponds to diffraction limit estimation.

Fig. 4.
Fig. 4.

Lotus root. Images (a)–(e) restored at different wavelengths, (f) full color image. Field of view=1  mm.

Fig. 5.
Fig. 5.

Lotus root. (a) Central part of the image from conventional microscope, and (b) the same image region obtained using our setup. Fresnel hyperspectral holograms were registered with the optical scheme shown in Fig. 2(a). Resolution 3μ.

Fig. 6.
Fig. 6.

(a) Image of an ant head restored at one spectral component, and (b) a hyperspectral image synthesized from 145 spectral components.

Fig. 7.
Fig. 7.

Noise elimination from the average-phase optical profiles of the earthworm slice. (a) A single phase profile, (b) an averaging of 25 phase profiles, (c) an averaging of 50 phase profiles. Field of view 1 mm. Fresnel hyperspectral holograms were registered with the optical scheme shown in Fig. 2(a).

Fig. 8.
Fig. 8.

Integral optical phase profile of human blood cells. Image plane hyperspectral holograms were registered with the optical scheme shown in Fig. 2(b).

Fig. 9.
Fig. 9.

Image of an earthworm slice, reconstructed from an image plane hologram. (a, b) Amplitude images in (a) VIS and (b) IR range. (c) An optical profile obtained in IR range 0.71μ. Image plane hyperspectral holograms were registered with the optical scheme shown in Fig. 2(b).

Fig. 10.
Fig. 10.

Images of the two overlapped ocular scales, illuminated through the mate glass, obtained at (a) z1=45.2  mm and (b) z1=47.4  mm. Field of view=1  mm.

Fig. 11.
Fig. 11.

Image of a micrometer head, gathered from several images of the scene at different depths. Fresnel hyperspectral holograms were registered with the optical scheme shown in Fig. 2(c).

Fig. 12.
Fig. 12.

Parts of the scene of a polygraphic colored target restored at different depths in reflection. Fresnel hyperspectral holograms were registered with the optical scheme shown in Fig. 2(c).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

uΩ(x)=1Ma(σm,x)E(σm)Δσmexp(2πiσmz)|z=0=Δσ1Ma(σm,x)E(σm).
A(σm,ξ)=ϕσm{a(σm,x)}=da(σm,x)exp[πiσm(xξ)2z]dx.
UΩ(ξ)=Δσ1MU(σm,ξ)=Δσ1Mexp(2πiσmz)E(σm)A(σm,ξ).
Gint(ξ,δ)=Δσ1MS(σm)[A(σm,ξ)exp(2πiσmδ)+A*(σm,ξ)exp(2πiσmδ)].
A(σm,ξ)=G(ξ,δ)exp(2πiσmδ)dδS(σm).
uΩ(x)=Δσ1Ma(σm,x)E(σm)=1L1Ma(σm,x)E(σm),
a(σ,x)exp(2πiσx22z)=F1[A(σ,ξ)exp(2πiσξ22z)].
a(σ,x)=exp(2πiσx22z)F1[A(σ,ξ)exp(2πiσξ22z)].
πσξ2zΔzzπ,orσD2zΔzz1,orΔzλz2D2=λ/θ02,

Metrics