Abstract

There is a large demand for the development of portable easy-to-use on-chip biosensors capable of single molecule detection. In this paper, we propose a new ultrasensitive label-free optical refractive index sensor consisting of a Fabry–Perot resonator evanescently coupled to a microring resonator. The coupling between the Fabry–Perot standing wave mode and degenerate whispering gallery modes of the microring leads to a splitting of the resonances proportional to the coupling. Choosing the coupling region to be a microfluidic channel through which the analyte solution is pumped leads to a change in the splitting proportional to the index of refraction of the analyte that is immune to common-mode noise sources in the resonators such as thermal noise. The high sensitivity of the coupling to the analyte index combined with the reduced noise leads to significant improvement in the detection limit down to 109  RIU.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro-capillary-based self-referencing surface plasmon resonance biosensor for determination of transferrin

Shimeng Chen, Yun Liu, Zigeng Liu, Shuwen Chu, and Wei Peng
Appl. Opt. 55(30) 8571-8575 (2016)

Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator

Saeed Olyaee and Samira Najafgholinezhad
Appl. Opt. 52(29) 7206-7213 (2013)

Silicon-on-Insulator microring resonator for sensitive and label-free biosensing

Katrien De Vos, Irene Bartolozzi, Etienne Schacht, Peter Bienstman, and Roel Baets
Opt. Express 15(12) 7610-7615 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
    [Crossref]
  2. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [Crossref]
  3. G. Nemova, A. V. Kabashin, and R. Kashyap, “Surface plasmon-polariton Mach–Zehnder refractive index sensor,” J. Opt. Soc. Am. B 25, 1673–1677 (2008).
    [Crossref]
  4. B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
    [Crossref]
  5. T. Liu, Y. Chen, Q. Han, F. Liu, and Y. Yao, “Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature,” Appl. Opt. 55, 791–795 (2016).
    [Crossref]
  6. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach–Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
    [Crossref]
  7. M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
    [Crossref]
  8. C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223, 2009–2021 (2014).
    [Crossref]
  9. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
    [Crossref]
  10. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
    [Crossref]
  11. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  12. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).
  13. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273 (2007).
    [Crossref]
  14. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
    [Crossref]
  15. B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref]
  16. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [Crossref]
  17. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  18. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
    [Crossref]
  19. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
    [Crossref]
  20. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I: synchronous couplers,” J. Lightwave Technol. 5, 113–118 (1987).
    [Crossref]
  21. G. Gupta, Y.-H. Kuo, H. Tazawa, W. H. Steier, A. Stapleton, and J. D. O’Brien, “Analysis and demonstration of coupling control in polymer microring resonators using photobleaching,” Appl. Opt. 48, 5324–5335 (2009).
    [Crossref]
  22. K. Leosson and B. Agnarsson, “Integrated biophotonics with CYTOP,” Micromachines 3, 114–125 (2012).
    [Crossref]
  23. M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolith. 7, 033010 (2008).
    [Crossref]
  24. O. Ziemann, J. Krauser, and P. E. Zamzow, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).
  25. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).
    [Crossref]
  26. I. P. Kaminow and T. Li, eds., Optical Fiber Telecommunications IV-A: Components, 4th ed. (Academic, 2002).
  27. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [Crossref]
  28. O. Reshef, K. Shtyrkova, M. Moebius, S. Griesse-Nascimento, S. Spector, C. Evans, E. Ippen, and E. Mazur, “Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient,” J. Opt. Soc. Am. B 32, 2288–2293 (2015).
    [Crossref]
  29. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach–Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
    [Crossref]
  30. D. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delage, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudene, and J.-M. Fedeli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
    [Crossref]
  31. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
    [Crossref]
  32. JEOL, “JEOL JBX-6300FS,” 2014, http://www.jeol.co.jp/en/products/detail/JBX-6300FS.html .

2016 (1)

2015 (1)

2014 (2)

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223, 2009–2021 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

2013 (1)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

2012 (4)

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

K. Leosson and B. Agnarsson, “Integrated biophotonics with CYTOP,” Micromachines 3, 114–125 (2012).
[Crossref]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach–Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
[Crossref]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach–Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20, 16300–16309 (2012).
[Crossref]

2010 (3)

D. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delage, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudene, and J.-M. Fedeli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref]

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

2009 (2)

2008 (3)

2007 (2)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273 (2007).
[Crossref]

2006 (2)

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

2003 (2)

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

1999 (1)

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[Crossref]

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

1987 (1)

D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I: synchronous couplers,” J. Lightwave Technol. 5, 113–118 (1987).
[Crossref]

Agnarsson, B.

K. Leosson and B. Agnarsson, “Integrated biophotonics with CYTOP,” Micromachines 3, 114–125 (2012).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Baets, R.

Bailey, R.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Bogaerts, W.

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Bozhevolnyi, S. I.

Breda, A.

Campanella, C. E.

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223, 2009–2021 (2014).
[Crossref]

Canciamilla, A.

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Cheben, P.

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Chen, W.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Chen, Y.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

De Leonardis, F.

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223, 2009–2021 (2014).
[Crossref]

Delage, A.

Densmore, A.

Dereux, A.

DeRose, G. A.

Dumon, P.

Evans, C.

Fan, B.

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Fan, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[Crossref]

Fedeli, J.-M.

Ferrari, C.

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

French, R. H.

M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolith. 7, 033010 (2008).
[Crossref]

Gleeson, M.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Gosciniak, J.

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Griesse-Nascimento, S.

Gunn, L.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Gunn, W.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Gupta, G.

Han, Q.

Han, X.

Harris, S. E.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Hochberg, M.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Huang, Y.

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Ippen, E.

Iqbal, M.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Janz, S.

Jian, X.

Kabashin, A. V.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Kash, M. M.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

Kashyap, R.

Krauser, J.

O. Ziemann, J. Krauser, and P. E. Zamzow, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Kuo, Y.-H.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Lapointe, J.

Leosson, K.

K. Leosson and B. Agnarsson, “Integrated biophotonics with CYTOP,” Micromachines 3, 114–125 (2012).
[Crossref]

Li, L.

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach–Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Li, M.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

Li, Y.

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Liu, D.

Liu, F.

T. Liu, Y. Chen, Q. Han, F. Liu, and Y. Yao, “Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature,” Appl. Opt. 55, 791–795 (2016).
[Crossref]

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Liu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

Liu, T.

Lukin, M. D.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[Crossref]

Ma, R.

Marcuse, D.

D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I: synchronous couplers,” J. Lightwave Technol. 5, 113–118 (1987).
[Crossref]

Markey, L.

Martinelli, M.

Mazur, E.

Melloni, A.

Messaoudene, S.

Miura, Y.

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Moebius, M.

Morichetti, F.

Morthier, G.

Nemova, G.

Nori, F.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

O’Brien, J. D.

Ohnishi, D.

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Passaro, V. M. N.

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223, 2009–2021 (2014).
[Crossref]

Peng, B.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Poon, J. K. S.

Post, E.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Reshef, O.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Sautenkov, V. A.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

Schmid, J. H.

Scully, M. O.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[Crossref]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Shtyrkova, K.

Spaugh, B.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Spector, S.

Stapleton, A.

Steier, W. H.

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Tazawa, H.

Teng, J.

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Tokarsky, E. W.

M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolith. 7, 033010 (2008).
[Crossref]

Tybor, F.

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Vachon, M.

van Hovell, S. W. F. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Welch, G. R.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

White, I. M.

Wijn, R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Wu, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

Xia, L.

Xiao, Y. F.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Xie, Z.

Xu, D.

Xu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Yang, L.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Yang, M. K.

M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolith. 7, 033010 (2008).
[Crossref]

Yao, Y.

Yariv, A.

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).
[Crossref]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).

Yelin, S. F.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[Crossref]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Zamzow, P. E.

O. Ziemann, J. Krauser, and P. E. Zamzow, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Zhang, H.

Zhao, M.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Zhu, L.

Ziemann, O.

O. Ziemann, J. Krauser, and P. E. Zamzow, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Anal. Chem. (1)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85, 9328–9332 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100, 111108 (2012).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223, 2009–2021 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

J. Lightwave Technol. (3)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I: synchronous couplers,” J. Lightwave Technol. 5, 113–118 (1987).
[Crossref]

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).
[Crossref]

J. Micro/Nanolith. (1)

M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolith. 7, 033010 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Micromachines (1)

K. Leosson and B. Agnarsson, “Integrated biophotonics with CYTOP,” Micromachines 3, 114–125 (2012).
[Crossref]

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[Crossref]

Nat. Commun. (1)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photonics 4, 122 (2010).
[Crossref]

Opt. Express (6)

Phys. Rev. A (2)

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[Crossref]

Phys. Rev. Lett. (2)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Other (4)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).

O. Ziemann, J. Krauser, and P. E. Zamzow, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

I. P. Kaminow and T. Li, eds., Optical Fiber Telecommunications IV-A: Components, 4th ed. (Academic, 2002).

JEOL, “JEOL JBX-6300FS,” 2014, http://www.jeol.co.jp/en/products/detail/JBX-6300FS.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) FPMR index sensor system consisting of a waveguide side coupled to a microring resonator, which is subsequently coupled to an integrated Fabry–Perot with high end reflectivities. The eigenstates of the two coupled resonators are equivalent to the eigenstates of a coherently driven three-level Λ atom shown in (b) that is used to demonstrate electromagnetically induced transparency and stimulated Raman adiabatic passage and (c) shows an example of how the microfluidic channel can be implemented in the coupling region.

Fig. 2.
Fig. 2.

Transmission spectrum calculated from coupled mode equations (dashed line) and transfer matrices (solid line) for KMF2=KMW2=0.001, R=50  μm, and α=0  dB/cm. Mode numbers used in the transfer matrices are mfp=10 and mmr=20 for the FP and MR resonators, respectively. The length of the FP was chosen such that ωFP=ωMR and a group velocity for both resonators of vFP=vMR=2.2×108m/s. The inset shows the resonator coupling KMF2 versus the location of the right-most resonance comparing the transfer matrix solution (solid line) to the coupled mode solution (dashed line).

Fig. 3.
Fig. 3.

Transmission spectrum of the FPMR for Δnc=0 (blue line), Δnc=106 (red line), and Δnc=2×106 (black line). Note that KMF2=0.0001, NA2=0.01, R=50  μm, α=0.12  dB/cm, KMW2=2πRα, and the resonator modes are degenerate ωFP=ωMR with mode numbers mfp=10 and mmr=20 for the FP and MR resonators, respectively.

Fig. 4.
Fig. 4.

Shift in the resonance splitting Δω versus index perturbation Δnc for the FPMR and Δωn for the AP setup. In both cases, KMW2=2πRα, R=50  μm, and α=0.12  dB/cm. The mode number of the AP is mmr=20, while for the FPMR ωFP=ωMR, mfp=10, mmr=20, and KMF2=0.0001.

Fig. 5.
Fig. 5.

Detection limit versus KMF2 for propagation losses α=0.5  dB/cm (black line), α=0.25  dB/cm (green line), α=0.12  dB/cm (blue line), and α=0.05  dB/cm (red line). Note, KMW2=2πRα, R=50  μm, NA2=0.01, ωFP=ωMR, and mode numbers mfp=10 and mmr=20.

Fig. 6.
Fig. 6.

(a) Microring resonator evanescently coupled to two waveguides with partially reflective ends used in the derivation of transfer matrices. (b) The limit of the FPMR system obtained by setting the reflectivities of the lower waveguide to 0 and those of the upper waveguide to 1. The relevant traveling wave mode amplitudes used in the text are labeled in the figure.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

da0dt=(i[ωFP+δωFP]γFP/2)a0iκMF(b1b2),
db1dt=(i[ωMR+δωMR]γMR/2)b1iκMFa0,
db2dt=(i[ωMR+δωMR]γMR/2)b2iκMFa0iκMWSineiωt.
Sout=SineiωtiκMWb2.
ω0=ΩMR,
ω±=12(ΩMR+ΩFP±8κMF2+(ΩMRΩFP)2),
S=dΔωdnc,
KMF2=ξ2ξ2+(δβ/2)2sin2(ξ2+(δβ/2)2Lint),
ΔKMF24n0NA2Δnc,
db2dt=(i[ωMR+δωMR+Δωn]γMR/2)b2iκMWSineiωt,
DL=ΔλSλ·4.5·SNR0.25,
2π2ΔKMF2mMRmFP(δnMRnMRδnFPnFP)2,
s=eiϕp/2u,w=eiϕp/2v,s=eiϕp/2u,w=eiϕp/2v
v=t1w+k1a1eiϕR/2,b2=t1a1eiϕR+k1weiϕR/2v=t2w,d1=k2weiϕR/2
b2a1=t1eiϕR+t2k12eiϕReiϕpt1t2,d1a1=k1k2eiϕReiϕp/2eiϕpt1t2.
[b2a2d2c2]=UMR[a1b1c1d1],
UMR=[eiϕR(t1t2eiϕp)t2eiϕpt100eiϕp/2k1k2t2eiϕpt10eiϕR(1eiϕpt1t2)t1eiϕpt2eiϕp/2k1k2t1eiϕpt200eiϕp/2k1k2t1eiϕpt2eiϕB(t1t2eiϕp)t1eiϕpt20eiϕp/2k1k2t2eiϕpt100eiϕR(1eiϕpt1t2)t2eiϕpt1].
a1=T3ainr3b1,bout=T3b1r3ain,
U3=1i1|r3|2[1r3r31],
U=[U400U2]UMR[U300U1],

Metrics