Abstract

Enormous performance gains have been made in fluoride-based fiber lasers operating around 3 μm due to advances in fiber fabrication and improvements in high-power pump diode technologies during the last decade. Pulsed fluoride fiber lasers capable of producing high-energy/high-peak power mid-infrared pulses are of significant interest for a variety of applications. Q-switched and mode-locked fiber lasers have been demonstrated with various techniques in recent years. In this paper, pulsed Er3+- and Ho3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers are reviewed, and our achievement of pulsed fiber laser sources at 3 μm is presented. Power/energy scaling of pulsed ZBLAN fiber lasers and their potential applications are discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1365-1377 (2013)

34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser

Chen Wei, Hongxia Shi, Hongyu Luo, Han Zhang, YanJia Lyu, and Yong Liu
Opt. Express 25(16) 19170-19178 (2017)

Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  2. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
    [Crossref]
  3. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  4. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78  μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007).
    [Crossref]
  5. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24  W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34, 3062–3063 (2009).
    [Crossref]
  6. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20  W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36, 1104–1106 (2011).
    [Crossref]
  7. S. Tokita, S. M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10  W Er: ZBLAN fiber laser operating at 2.71-2.88  μm,” Opt. Lett. 35, 3943–3945 (2010).
    [Crossref]
  8. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30  W fluoride glass all-fiber laser at 2.94  μm,” Opt. Lett. 40, 2882–2885 (2015).
    [Crossref]
  9. X. Zhu and R. Jain, “Compact 2  W wavelength-tunable Er:ZBLAN mid-IR fiber laser,” Opt. Lett. 32, 2381–2383 (2007).
    [Crossref]
  10. X. Zhu and R. Jain, “Watt-level 100-nm tunable 3-μm fiber laser,” Photon. Technol. Lett. 20, 156–158 (2008).
    [Crossref]
  11. D. Faucher, M. Bernier, M. Caron, and R. Vallée, “Erbium-doped all-fiber laser at 2.94  μm,” Opt. Lett. 34, 3313–3315 (2009).
    [Crossref]
  12. X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7  μm fiber lasers with different pumping designs,” Appl. Opt. 45, 7118–7125 (2006).
    [Crossref]
  13. X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr codoped ZBLAN fiber amplifiers at 2.7– 2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
    [Crossref]
  14. M. Bernier, D. Faucher, N. Caron, and R. Vallee, “Highly stable and efficient erbium-doped 2.8  μm all fiber laser,” Opt. Express 17, 16941–16946 (2009).
    [Crossref]
  15. H. Tobben, “Room temperature CW fiber laser at 3.5  μm in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
    [Crossref]
  16. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5  μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
    [Crossref]
  17. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Wavelength tunable mid-infrared Er3+: ZBLAN fiber laser at 3.5  μm using dual wavelength pumping,” in Conference on Lasers and Electro-Optics (2015), paper SW1L. 5.
  18. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
    [Crossref]
  19. V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallee, “Watt-level erbium-doped all-fiber laser at 3.44  μm,” Opt. Lett. 41, 559–562 (2016).
    [Crossref]
  20. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86  μm,” Opt. Lett. 29, 334–336 (2004).
    [Crossref]
  21. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94  μm,” Opt. Lett. 34, 2327–2329 (2009).
    [Crossref]
  22. S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92  μm,” Electron. Lett. 40, 1400–1401 (2004).
    [Crossref]
  23. D. V. Talavera and E. B. Mejia, “Holmium-doped fluoride fiber laser at 2950  nm pumped at 1175  nm,” Laser Phys. 16, 436–440 (2006).
    [Crossref]
  24. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
    [Crossref]
  25. J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
    [Crossref]
  26. C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22  μm,” Electron. Lett. 34, 893–894 (1998).
    [Crossref]
  27. J. Schneider, “Fluoride fiber laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
    [Crossref]
  28. S. D. Jackson, “Continuous wave 2.9  μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83, 1316–1318 (2003).
    [Crossref]
  29. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96  μm dysprosium-doped fluoride fiber laser pumped with a Nd:YAG laser operating at 1.3  μm,” Opt. Express 14, 678–685 (2006).
    [Crossref]
  30. Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
    [Crossref]
  31. H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
    [Crossref]
  32. L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15, 315–341 (1994).
    [Crossref]
  33. J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).
  34. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
    [Crossref]
  35. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7  μm,” Electron. Lett. 30, 706–707 (1994).
    [Crossref]
  36. D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
    [Crossref]
  37. C. Frerichs and U. B. Unrau, “Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7  μm,” Opt. Fiber Technol. 2, 358–366, 1996.
    [Crossref]
  38. N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, 2000), paper MD2.
  39. S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
    [Crossref]
  40. S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in Er3+:ZBLAN single mode fiber lasers,” Electron. Lett. 31, 199–200 (1995).
    [Crossref]
  41. C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
    [Crossref]
  42. M. Pollnau, C. Ghisler, W. Luthy, and H. P. Weber, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6  μm,” Opt. Lett. 22, 612–614 (1997).
    [Crossref]
  43. M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
    [Crossref]
  44. S. D. Jackson, “High-power erbium cascade fiber laser,” Electron. Lett. 45, 830–832 (2009).
    [Crossref]
  45. B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
    [Crossref]
  46. B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
    [Crossref]
  47. S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-μm fiber laser,” Opt. Lett. 24, 1133–1135 (1999).
    [Crossref]
  48. T. Sandrock, D. Fischer, P. Glas, M. Leitner, and W. Wrage, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8  μm,” Opt. Lett. 24, 1284–1286 (1999).
    [Crossref]
  49. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
    [Crossref]
  50. S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3  μm fiber laser diode-pumped at 975  nm,” Electron. Lett. 36, 223–224 (2000).
    [Crossref]
  51. L. Wetenkamp, “Efficient CW operation of a 2.9  μm Ho3+-doped fluorozirconate fiber laser pumped at 640  nm,” Electron. Lett. 26, 883–884 (1990).
    [Crossref]
  52. T. Sumiyoshi and H. Sekita, “Dual-wavelength continuous-wave cascade oscillation at 3 and 2  μm with a holmium-doped fluoride-glass fiber laser,” Opt. Lett. 23, 1837–1839 (1998).
    [Crossref]
  53. S. Crawford, D. D. Hudson, and S. Jackson, “3.4  W Ho3+, Pr3+ co-doped fluoride fibre laser,” in Conference on Lasers and Electro-Optics (2014), paper STu1L. 3.
  54. J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photon. Technol. Lett. 24, 1215–1217 (2012).
    [Crossref]
  55. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
    [Crossref]
  56. S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.
  57. M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36, 1923–1925 (2011).
    [Crossref]
  58. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
    [Crossref]
  59. T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
    [Crossref]
  60. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
    [Crossref]
  61. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.
  62. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
    [Crossref]
  63. J. Liu, B. Huang, P. Tang, C. Zhao, S. Wen, and D. Fan, “Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er3+: ZBLAN fiber laser,” in Conference on Lasers and Electro-Optics (2016), paper AW1K.7.
  64. T. Hu, D. D. Hudson, and S. D. Jackson, “Active Q-switched 2.9  μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37, 2145–2147 (2012).
    [Crossref]
  65. J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37, 2208–2210 (2012).
    [Crossref]
  66. J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
    [Crossref]
  67. J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20, 13123–13128 (2012).
    [Crossref]
  68. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
    [Crossref]
  69. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+ doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
    [Crossref]
  70. J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
    [Crossref]
  71. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
    [Crossref]
  72. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
    [Crossref]
  73. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
    [Crossref]
  74. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
    [Crossref]
  75. A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8  μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39, 3294–3297 (2014).
    [Crossref]
  76. P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+ doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
    [Crossref]
  77. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
    [Crossref]
  78. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
    [Crossref]
  79. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40, 4226–4228 (2015).
    [Crossref]
  80. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
    [Crossref]
  81. T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3  μm class,” Opt. Lett. 39, 2133–2136 (2014).
    [Crossref]
  82. K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).
  83. X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr codoped ZBLAN fiber amplifiers at 2.7–2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
    [Crossref]
  84. G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
    [Crossref]
  85. A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
    [Crossref]
  86. M. Pollaun and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds., NATO Science for Peace and Security Series B: Physics and Biophysics (2008), pp. 315–346.
  87. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds., Topics in Applied Physics (2003), Vol. 89, pp. 445–516.
  88. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
    [Crossref]
  89. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
    [Crossref]
  90. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17, 12627–12640 (2009).
    [Crossref]
  91. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  92. L. Ladbadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
    [Crossref]
  93. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. A 359, 635–644 (2001).
    [Crossref]
  94. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
    [Crossref]
  95. B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
    [Crossref]
  96. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallee, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
    [Crossref]
  97. G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5  μm Raman lasers using tellurite fiber,” Opt. Express 23, 7559–7573 (2015).
    [Crossref]
  98. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
    [Crossref]
  99. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
    [Crossref]
  100. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messadeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S2 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
    [Crossref]
  101. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
    [Crossref]

2016 (6)

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallee, “Watt-level erbium-doped all-fiber laser at 3.44  μm,” Opt. Lett. 41, 559–562 (2016).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

2015 (8)

2014 (5)

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5  μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3  μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8  μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39, 3294–3297 (2014).
[Crossref]

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

2013 (6)

2012 (9)

2011 (5)

2010 (6)

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
[Crossref]

S. Tokita, S. M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10  W Er: ZBLAN fiber laser operating at 2.71-2.88  μm,” Opt. Lett. 35, 3943–3945 (2010).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
[Crossref]

B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

2009 (7)

2008 (3)

2007 (3)

2006 (4)

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96  μm dysprosium-doped fluoride fiber laser pumped with a Nd:YAG laser operating at 1.3  μm,” Opt. Express 14, 678–685 (2006).
[Crossref]

X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7  μm fiber lasers with different pumping designs,” Appl. Opt. 45, 7118–7125 (2006).
[Crossref]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

D. V. Talavera and E. B. Mejia, “Holmium-doped fluoride fiber laser at 2950  nm pumped at 1175  nm,” Laser Phys. 16, 436–440 (2006).
[Crossref]

2004 (3)

S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92  μm,” Electron. Lett. 40, 1400–1401 (2004).
[Crossref]

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
[Crossref]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86  μm,” Opt. Lett. 29, 334–336 (2004).
[Crossref]

2003 (1)

S. D. Jackson, “Continuous wave 2.9  μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83, 1316–1318 (2003).
[Crossref]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

2001 (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. A 359, 635–644 (2001).
[Crossref]

2000 (2)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3  μm fiber laser diode-pumped at 975  nm,” Electron. Lett. 36, 223–224 (2000).
[Crossref]

1999 (6)

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[Crossref]

J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-μm fiber laser,” Opt. Lett. 24, 1133–1135 (1999).
[Crossref]

T. Sandrock, D. Fischer, P. Glas, M. Leitner, and W. Wrage, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8  μm,” Opt. Lett. 24, 1284–1286 (1999).
[Crossref]

B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[Crossref]

1998 (2)

1997 (1)

1996 (1)

C. Frerichs and U. B. Unrau, “Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7  μm,” Opt. Fiber Technol. 2, 358–366, 1996.
[Crossref]

1995 (6)

S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
[Crossref]

S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in Er3+:ZBLAN single mode fiber lasers,” Electron. Lett. 31, 199–200 (1995).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

J. Schneider, “Fluoride fiber laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
[Crossref]

1994 (2)

L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15, 315–341 (1994).
[Crossref]

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7  μm,” Electron. Lett. 30, 706–707 (1994).
[Crossref]

1992 (2)

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

H. Tobben, “Room temperature CW fiber laser at 3.5  μm in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
[Crossref]

1990 (1)

L. Wetenkamp, “Efficient CW operation of a 2.9  μm Ho3+-doped fluorozirconate fiber laser pumped at 640  nm,” Electron. Lett. 26, 883–884 (1990).
[Crossref]

Amraoui, M. E.

Androz, G.

Arai, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Bah, S. T.

Balakrishnan, K.

Bedo, S.

S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
[Crossref]

S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in Er3+:ZBLAN single mode fiber lasers,” Electron. Lett. 31, 199–200 (1995).
[Crossref]

Benson, T.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Bernier, M.

Birngruber, R.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Bunea, G.

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

Bunea, M.

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

Carbonnier, C.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22  μm,” Electron. Lett. 34, 893–894 (1998).
[Crossref]

Caron, M.

Caron, N.

Chen, Q.

Cheng, T.

Cheng, X.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Coleman, D. J.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
[Crossref]

Copic, M.

Crawford, S.

S. Crawford, D. D. Hudson, and S. Jackson, “3.4  W Ho3+, Pr3+ co-doped fluoride fibre laser,” in Conference on Lasers and Electro-Optics (2014), paper STu1L. 3.

D’Auteuil, M.

Deckelbaum, L. I.

L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15, 315–341 (1994).
[Crossref]

Deng, D.

Deutsch, T. F.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Duan, Z.

Duval, S.

El-Amraoui, M.

El-Taher, A. E.

Fan, D.

J. Liu, B. Huang, P. Tang, C. Zhao, S. Wen, and D. Fan, “Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er3+: ZBLAN fiber laser,” in Conference on Lasers and Electro-Optics (2016), paper AW1K.7.

Farries, M.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Faucher, D.

Featherstone, J. D.

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

Feng, G.

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Fischer, D.

Flotte, T. J.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Fortin, V.

Francis, M.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Freeman, M. J.

Frerichs, C.

C. Frerichs and U. B. Unrau, “Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7  μm,” Opt. Fiber Technol. 2, 358–366, 1996.
[Crossref]

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7  μm,” Electron. Lett. 30, 706–707 (1994).
[Crossref]

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds., Topics in Applied Physics (2003), Vol. 89, pp. 445–516.

Fried, D.

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

Fuhrberg, P.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. A 359, 635–644 (2001).
[Crossref]

Gao, W.

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Genest, J.

Geng, L.

Ghisler, C.

M. Pollnau, C. Ghisler, W. Luthy, and H. P. Weber, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6  μm,” Opt. Lett. 22, 612–614 (1997).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

Glas, P.

Godard, A.

A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[Crossref]

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

Gorjan, M.

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Haboucha, A.

Halonen, L.

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hashida, M.

He, Y.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Henderson-Sapir, O.

Hirokane, S. M.

Hou, J.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Hu, T.

Huang, B.

J. Liu, B. Huang, P. Tang, C. Zhao, S. Wen, and D. Fan, “Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er3+: ZBLAN fiber laser,” in Conference on Lasers and Electro-Optics (2016), paper AW1K.7.

Hudson, D. D.

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. A 359, 635–644 (2001).
[Crossref]

Ishihari, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Islam, M. N.

Jackson, S.

S. Crawford, D. D. Hudson, and S. Jackson, “3.4  W Ho3+, Pr3+ co-doped fluoride fibre laser,” in Conference on Lasers and Electro-Optics (2014), paper STu1L. 3.

Jackson, S. D.

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40, 4226–4228 (2015).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3  μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photon. Technol. Lett. 24, 1215–1217 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Active Q-switched 2.9  μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37, 2145–2147 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37, 2208–2210 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20, 13123–13128 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
[Crossref]

S. D. Jackson, “High-power erbium cascade fiber laser,” Electron. Lett. 45, 830–832 (2009).
[Crossref]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94  μm,” Opt. Lett. 34, 2327–2329 (2009).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96  μm dysprosium-doped fluoride fiber laser pumped with a Nd:YAG laser operating at 1.3  μm,” Opt. Express 14, 678–685 (2006).
[Crossref]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86  μm,” Opt. Lett. 29, 334–336 (2004).
[Crossref]

S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92  μm,” Electron. Lett. 40, 1400–1401 (2004).
[Crossref]

S. D. Jackson, “Continuous wave 2.9  μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83, 1316–1318 (2003).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3  μm fiber laser diode-pumped at 975  nm,” Electron. Lett. 36, 223–224 (2000).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-μm fiber laser,” Opt. Lett. 24, 1133–1135 (1999).
[Crossref]

M. Pollaun and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds., NATO Science for Peace and Security Series B: Physics and Biophysics (2008), pp. 315–346.

Jain, R.

Jain, R. K.

B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[Crossref]

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[Crossref]

N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, 2000), paper MD2.

Jalali, B.

B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Jiang, T.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Kampmeier, J.

J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Kawashima, H.

Ke, K.

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Kikuchi, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

King, T. A.

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96  μm dysprosium-doped fluoride fiber laser pumped with a Nd:YAG laser operating at 1.3  μm,” Opt. Express 14, 678–685 (2006).
[Crossref]

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3  μm fiber laser diode-pumped at 975  nm,” Electron. Lett. 36, 223–224 (2000).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-μm fiber laser,” Opt. Lett. 24, 1133–1135 (1999).
[Crossref]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
[Crossref]

Ko, D.-K.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Ladbadie, L.

Lamrini, S.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Lan, B.

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Lang, G. E.

J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).

Lang, G. K.

J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).

Lee, J.

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
[Crossref]

Leitner, M.

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Li, H.

Li, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+ doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photon. Technol. Lett. 24, 1215–1217 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20, 13123–13128 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37, 2208–2210 (2012).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
[Crossref]

Li, L.

Li, Y.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Liao, M.

Libatique, N. J. C.

N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, 2000), paper MD2.

Liu, J.

P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+ doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
[Crossref]

J. Liu, B. Huang, P. Tang, C. Zhao, S. Wen, and D. Fan, “Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er3+: ZBLAN fiber laser,” in Conference on Lasers and Electro-Optics (2016), paper AW1K.7.

Liu, Y.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+ doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

Luo, H.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+ doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Luthy, W.

M. Pollnau, C. Ghisler, W. Luthy, and H. P. Weber, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6  μm,” Opt. Lett. 22, 612–614 (1997).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in Er3+:ZBLAN single mode fiber lasers,” Electron. Lett. 31, 199–200 (1995).
[Crossref]

S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
[Crossref]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Maes, F.

Manzur, T.

Marincek, M.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Mejia, E. B.

D. V. Talavera and E. B. Mejia, “Holmium-doped fluoride fiber laser at 2950  nm pumped at 1175  nm,” Laser Phys. 16, 436–440 (2006).
[Crossref]

Merimaa, M.

Messaddeq, Y.

Messadeq, Y.

Mori, A.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
[Crossref]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Munch, J.

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5  μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Wavelength tunable mid-infrared Er3+: ZBLAN fiber laser at 3.5  μm using dual wavelength pumping,” in Conference on Lasers and Electro-Optics (2015), paper SW1L. 5.

Murakami, M.

Napier, B.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Norwood, R. A.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5  μm Raman lasers using tellurite fiber,” Opt. Express 23, 7559–7573 (2015).
[Crossref]

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Ohishi, Y.

Oladeji, A.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Ottaway, D. J.

Petkovsek, R.

Peyghambarian, N.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5  μm Raman lasers using tellurite fiber,” Opt. Express 23, 7559–7573 (2015).
[Crossref]

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

Piché, M.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Pollaun, M.

M. Pollaun and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds., NATO Science for Peace and Security Series B: Physics and Biophysics (2008), pp. 315–346.

Pollnau, M.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3  μm fiber laser diode-pumped at 975  nm,” Electron. Lett. 36, 223–224 (2000).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-μm fiber laser,” Opt. Lett. 24, 1133–1135 (1999).
[Crossref]

M. Pollnau, C. Ghisler, W. Luthy, and H. P. Weber, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6  μm,” Opt. Lett. 22, 612–614 (1997).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
[Crossref]

Poppe, E.

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[Crossref]

Puliafito, C. A.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Qian, L.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
[Crossref]

Qin, Z.

Ren, Q.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds., Topics in Applied Physics (2003), Vol. 89, pp. 445–516.

Rozhin, A. G.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Sakabe, S.

Sandrock, T.

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Sato, S.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Schafer, S.

J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).

Schäfer, M.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schneider, J.

J. Schneider, “Fluoride fiber laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
[Crossref]

Scholle, K.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Schomacker, K.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Seddon, A.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Sekita, H.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

T. Sumiyoshi and H. Sekita, “Dual-wavelength continuous-wave cascade oscillation at 3 and 2  μm with a holmium-doped fluoride-glass fiber laser,” Opt. Lett. 23, 1837–1839 (1998).
[Crossref]

Shimizu, S.

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Song, F.

Srinivasan, B.

B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[Crossref]

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[Crossref]

Stiles, E.

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

Sujecki, S.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Sumiyoshi, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

T. Sumiyoshi and H. Sekita, “Dual-wavelength continuous-wave cascade oscillation at 3 and 2  μm with a holmium-doped fluoride-glass fiber laser,” Opt. Lett. 23, 1837–1839 (1998).
[Crossref]

Suzuki, T.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Tafoya, J.

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[Crossref]

B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[Crossref]

Tafoya, J. D.

N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, 2000), paper MD2.

Talavera, D. V.

D. V. Talavera and E. B. Mejia, “Holmium-doped fluoride fiber laser at 2950  nm pumped at 1175  nm,” Laser Phys. 16, 436–440 (2006).
[Crossref]

Tang, P.

P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+ doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
[Crossref]

J. Liu, B. Huang, P. Tang, C. Zhao, S. Wen, and D. Fan, “Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er3+: ZBLAN fiber laser,” in Conference on Lasers and Electro-Optics (2016), paper AW1K.7.

Tauermann, T.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7  μm,” Electron. Lett. 30, 706–707 (1994).
[Crossref]

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds., Topics in Applied Physics (2003), Vol. 89, pp. 445–516.

Tobben, H.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22  μm,” Electron. Lett. 34, 893–894 (1998).
[Crossref]

H. Tobben, “Room temperature CW fiber laser at 3.5  μm in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
[Crossref]

Tokita, S.

Tsang, Y. H.

Turistyn, S. K.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Unrau, U. B.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22  μm,” Electron. Lett. 34, 893–894 (1998).
[Crossref]

C. Frerichs and U. B. Unrau, “Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7  μm,” Opt. Fiber Technol. 2, 358–366, 1996.
[Crossref]

Vainio, M.

Vallee, R.

Vallée, R.

Venugopalan, V.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

Visuri, S. R.

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

Waldvogel, J. L.

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

Wallner, O.

Walsh, J. T.

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

Wang, F.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

Wang, L.

Ward, J.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. A 359, 635–644 (2001).
[Crossref]

Weber, H. P.

M. Pollnau, C. Ghisler, W. Luthy, and H. P. Weber, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6  μm,” Opt. Lett. 22, 612–614 (1997).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
[Crossref]

S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in Er3+:ZBLAN single mode fiber lasers,” Electron. Lett. 31, 199–200 (1995).
[Crossref]

Wei, C.

Welsh, M. J.

Wen, S.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Wetenkamp, L.

L. Wetenkamp, “Efficient CW operation of a 2.9  μm Ho3+-doped fluorozirconate fiber laser pumped at 640  nm,” Electron. Lett. 26, 883–884 (1990).
[Crossref]

Wigdor, H. A.

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Wrage, W.

Xia, C.

Xie, G.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Xu, Y.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
[Crossref]

Yang, X.

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Yang, Y.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

Yin, K.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Yu, H.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Yuan, P.

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Zhai, B.

Zhang, H.

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

Zhang, L.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Zhang, T.

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhao, C.

Zheng, X.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Zhou, K. M.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Zhou, S.

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhu, G.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5  μm Raman lasers using tellurite fiber,” Opt. Express 23, 7559–7573 (2015).
[Crossref]

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
[Crossref]

Zhu, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5  μm Raman lasers using tellurite fiber,” Opt. Express 23, 7559–7573 (2015).
[Crossref]

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3-μm fiber laser,” Photon. Technol. Lett. 20, 156–158 (2008).
[Crossref]

X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr codoped ZBLAN fiber amplifiers at 2.7– 2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
[Crossref]

X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr codoped ZBLAN fiber amplifiers at 2.7–2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
[Crossref]

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78  μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007).
[Crossref]

X. Zhu and R. Jain, “Compact 2  W wavelength-tunable Er:ZBLAN mid-IR fiber laser,” Opt. Lett. 32, 2381–2383 (2007).
[Crossref]

X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7  μm fiber lasers with different pumping designs,” Appl. Opt. 45, 7118–7125 (2006).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. D. Jackson, “Continuous wave 2.9  μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83, 1316–1318 (2003).
[Crossref]

M. Pollnau, C. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150  mW unsaturated output power at 3  μm from a single-mode fiber erbium cascade fiber,” Appl. Phys. Lett. 66, 3564–3567 (1995).
[Crossref]

C. R. Phys. (1)

A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[Crossref]

Electron. Lett. (11)

S. D. Jackson, “High-power erbium cascade fiber laser,” Electron. Lett. 45, 830–832 (2009).
[Crossref]

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400  mW) diode-pumped 2.7  μm Er:ZBLAN fiber lasers using enhanced Er-Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3  μm fiber laser diode-pumped at 975  nm,” Electron. Lett. 36, 223–224 (2000).
[Crossref]

L. Wetenkamp, “Efficient CW operation of a 2.9  μm Ho3+-doped fluorozirconate fiber laser pumped at 640  nm,” Electron. Lett. 26, 883–884 (1990).
[Crossref]

S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in Er3+:ZBLAN single mode fiber lasers,” Electron. Lett. 31, 199–200 (1995).
[Crossref]

C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7  μm with simultaneous 2.7  μm lasing in erbium ZBLAN fiber,” Electron. Lett. 31, 373–374 (1995).
[Crossref]

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7  μm,” Electron. Lett. 30, 706–707 (1994).
[Crossref]

H. Tobben, “Room temperature CW fiber laser at 3.5  μm in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
[Crossref]

S. D. Jackson, “Singly Ho3+-doped fluoride fiber laser operating at 2.92  μm,” Electron. Lett. 40, 1400–1401 (2004).
[Crossref]

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22  μm,” Electron. Lett. 34, 893–894 (1998).
[Crossref]

J. Schneider, “Fluoride fiber laser operating at 3.9  μm,” Electron. Lett. 31, 1250–1251 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photon. Technol. Lett. 24, 1215–1217 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

J. Appl. Phys. (1)

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 043108 (2010).
[Crossref]

J. Lightwave Technol. (1)

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8  μm,” J. Lightwave Technol. 32, 4553–4557 (2014).
[Crossref]

J. Refract. Surg. (1)

J. Kampmeier, S. Schafer, G. E. Lang, and G. K. Lang, “Comparison of free-running vs. Q-switched Er: YAG laser photorefractive keratectomy (scanning mode) in swine eyes,” J. Refract. Surg. 15, 563–571 (1999).

Laser Phys. (1)

D. V. Talavera and E. B. Mejia, “Holmium-doped fluoride fiber laser at 2950  nm pumped at 1175  nm,” Laser Phys. 16, 436–440 (2006).
[Crossref]

Laser Phys. Lett. (5)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

T. Zhang, G. Feng, H. Zhang, X. Yang, B. Lan, and S. Zhou, “2.78  μm passively Q-switched Er3+ doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Lasers Surg. Med. (3)

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12, 274–281 (1992).
[Crossref]

H. A. Wigdor and J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16, 103–133 (1995).
[Crossref]

L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15, 315–341 (1994).
[Crossref]

Nat. Photonics (3)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

Opt. Commun. (2)

D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switch operation of a 2.7  μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fiber laser,” Opt. Commun. 236, 379–385 (2004).
[Crossref]

S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71  μm laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).
[Crossref]

Opt. Express (11)

M. Bernier, D. Faucher, N. Caron, and R. Vallee, “Highly stable and efficient erbium-doped 2.8  μm all fiber laser,” Opt. Express 17, 16941–16946 (2009).
[Crossref]

B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20, 13123–13128 (2012).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+ doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96  μm dysprosium-doped fluoride fiber laser pumped with a Nd:YAG laser operating at 1.3  μm,” Opt. Express 14, 678–685 (2006).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17, 12627–12640 (2009).
[Crossref]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messadeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S2 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5  μm Raman lasers using tellurite fiber,” Opt. Express 23, 7559–7573 (2015).
[Crossref]

L. Ladbadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
[Crossref]

Opt. Fiber Technol. (1)

C. Frerichs and U. B. Unrau, “Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7  μm,” Opt. Fiber Technol. 2, 358–366, 1996.
[Crossref]

Opt. Laser Eng. (2)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser Eng. 37, 101–114 (2002).
[Crossref]

Opt. Lett. (35)

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallee, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35, 136–138 (2010).
[Crossref]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
[Crossref]

X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr codoped ZBLAN fiber amplifiers at 2.7–2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
[Crossref]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8  μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39, 3294–3297 (2014).
[Crossref]

P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+ doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 40, 4855–4858 (2015).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40, 4226–4228 (2015).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3  μm class,” Opt. Lett. 39, 2133–2136 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5  μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3  μm,” Opt. Lett. 36, 3642–3644 (2011).
[Crossref]

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78  μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24  W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34, 3062–3063 (2009).
[Crossref]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20  W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36, 1104–1106 (2011).
[Crossref]

S. Tokita, S. M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10  W Er: ZBLAN fiber laser operating at 2.71-2.88  μm,” Opt. Lett. 35, 3943–3945 (2010).
[Crossref]

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30  W fluoride glass all-fiber laser at 2.94  μm,” Opt. Lett. 40, 2882–2885 (2015).
[Crossref]

X. Zhu and R. Jain, “Compact 2  W wavelength-tunable Er:ZBLAN mid-IR fiber laser,” Opt. Lett. 32, 2381–2383 (2007).
[Crossref]

X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr codoped ZBLAN fiber amplifiers at 2.7– 2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
[Crossref]

D. Faucher, M. Bernier, M. Caron, and R. Vallée, “Erbium-doped all-fiber laser at 2.94  μm,” Opt. Lett. 34, 3313–3315 (2009).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
[Crossref]

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallee, “Watt-level erbium-doped all-fiber laser at 3.44  μm,” Opt. Lett. 41, 559–562 (2016).
[Crossref]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86  μm,” Opt. Lett. 29, 334–336 (2004).
[Crossref]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94  μm,” Opt. Lett. 34, 2327–2329 (2009).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Active Q-switched 2.9  μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37, 2145–2147 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37, 2208–2210 (2012).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36, 1923–1925 (2011).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-μm fiber laser,” Opt. Lett. 24, 1133–1135 (1999).
[Crossref]

T. Sandrock, D. Fischer, P. Glas, M. Leitner, and W. Wrage, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8  μm,” Opt. Lett. 24, 1284–1286 (1999).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
[Crossref]

M. Pollnau, C. Ghisler, W. Luthy, and H. P. Weber, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6  μm,” Opt. Lett. 22, 612–614 (1997).
[Crossref]

T. Sumiyoshi and H. Sekita, “Dual-wavelength continuous-wave cascade oscillation at 3 and 2  μm with a holmium-doped fluoride-glass fiber laser,” Opt. Lett. 23, 1837–1839 (1998).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Philos. Trans. R. Soc. A (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. A 359, 635–644 (2001).
[Crossref]

Photon. Technol. Lett. (1)

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3-μm fiber laser,” Photon. Technol. Lett. 20, 156–158 (2008).
[Crossref]

Phys. Rev. B (1)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

Other (10)

S. Crawford, D. D. Hudson, and S. Jackson, “3.4  W Ho3+, Pr3+ co-doped fluoride fibre laser,” in Conference on Lasers and Electro-Optics (2014), paper STu1L. 3.

S. Lamrini, K. Scholle, M. Schäfer, J. Ward, M. Francis, M. Farries, S. Sujecki, T. Benson, A. Seddon, A. Oladeji, B. Napier, and P. Fuhrberg, “High-energy Q-switched Er:ZBLAN fibre laser at 2.79  μm,” in Conference on Lasers and Electro-Optics/European Quantum Electronics Conference (2015), paper CJ_7_2.

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Graphene Q-switching of a 3  μm Er: ZBLAN fiber laser,” in Advanced Solid-State Lasers Congress (2013), paper AF2A.9.

J. Liu, B. Huang, P. Tang, C. Zhao, S. Wen, and D. Fan, “Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er3+: ZBLAN fiber laser,” in Conference on Lasers and Electro-Optics (2016), paper AW1K.7.

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Wavelength tunable mid-infrared Er3+: ZBLAN fiber laser at 3.5  μm using dual wavelength pumping,” in Conference on Lasers and Electro-Optics (2015), paper SW1L. 5.

N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, 2000), paper MD2.

M. Pollaun and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds., NATO Science for Peace and Security Series B: Physics and Biophysics (2008), pp. 315–346.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds., Topics in Applied Physics (2003), Vol. 89, pp. 445–516.

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, and J. Hou, “Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber,” arXiv:1505.06322 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1.
Fig. 1. Partial energy-level diagrams of Er 3 + and Pr 3 + and corresponding transitions related to the 2.8 μm laser emission.
Fig. 2.
Fig. 2. Partial energy-level diagrams of Ho 3 + and Pr 3 + and corresponding transitions related to the 2.9 μm laser emission.
Fig. 3.
Fig. 3. Pulse energy and pulse duration of a Fe 2 + : ZnSeQ -switched Er 3 + -doped ZBLAN fiber laser as a function of the pump power.
Fig. 4.
Fig. 4. Schematic of a graphene Q -switched Er 3 + -doped ZBLAN fiber laser. Inset shows a picture of a graphene-deposited fiber mirror.
Fig. 5.
Fig. 5. Pulse energy and pulse duration of a graphene Q -switched Er 3 + -doped ZBLAN fiber laser as a function of the pump power.
Fig. 6.
Fig. 6. Pulse trains of the graphene Q -switched Er 3 + -doped ZBLAN fiber laser pumped at 406 and 828 mW.
Fig. 7.
Fig. 7. Optical spectrum of a graphene Q -switched Er 3 + -doped ZBLAN fiber laser. Inset: pulse envelope of a Q -switched pulse.
Fig. 8.
Fig. 8. Schematic of a SESA Q -switched Er 3 + -doped ZBLAN fiber laser in a ring-cavity configuration.
Fig. 9.
Fig. 9. Average output power and pulse energy of a SESA Q -switched Er 3 + -doped ZBLAN fiber laser versus pump power.
Fig. 10.
Fig. 10. Repetition rate and pulse duration of a SESA Q -switched Er 3 + -doped ZBLAN fiber laser versus the pump power.
Fig. 11.
Fig. 11. Optical spectrum of an Fe 2 + : ZnSe Q -switched Ho 3 + -doped ZBLAN fiber laser. Insets: pulse envelope (left) and pulse train (right).
Fig. 12.
Fig. 12. The pulse energy and pulse duration of an Fe 2 + : ZnSe Q -switched Ho 3 + -doped fiber laser as a function of the pump power.
Fig. 13.
Fig. 13. Pulse energy and pulse duration of a graphene Q -switched Ho 3 + -doped fiber laser as a function of the pump power.
Fig. 14.
Fig. 14. Optical spectrum of a Fe 2 + : ZnSe cw mode-locked Er 3 + -doped fiber laser. Inset: pulse train of 2.4 μs shows cw mode locking.
Fig. 15.
Fig. 15. Optical spectrum of a Fe 2 + : ZnSe Q -switched mode-locked Er 3 + -doped fiber laser. Inset: pulse train shows Q -switched mode locking.
Fig. 16.
Fig. 16. Measured transmission of a graphene saturable absorption mirror as a function of the power density at 2.8 μm. Inset: graphene-deposited gold mirror.
Fig. 17.
Fig. 17. Optical spectrum of the graphene mode-locked Er 3 + -doped ZBLAN fiber laser. Inset: pulse train shows a cw mode locking.
Fig. 18.
Fig. 18. RF spectrum of a graphene mode-locked Er 3 + -doped ZBLAN fiber laser. Inset: autocorrelation trace with a FWHM of 65 ps.
Fig. 19.
Fig. 19. Schematic of an Er 3 + -doped ZBLAN fiber amplifier for Q -switched laser at 2.8 μm.
Fig. 20.
Fig. 20. Pulse energy and average power of an Er 3 + -doped ZBLAN fiber amplifier for a Q -switched laser at 2.8 μm.
Fig. 21.
Fig. 21. Pulse envelopes of the incident signal laser and amplified Q -switched laser at different output powers. Inset: optical spectrum of the incident signal laser and the amplified laser.
Fig. 22.
Fig. 22. Calculated output power as a function of the wavelength for four first and second tellurite fiber-Raman lasers pumped by a 20 W cw Er 3 + -doped ZBLAN fiber laser at 2.8 μm.
Fig. 23.
Fig. 23. Optical spectra of supercontinuum generated in a 50 cm tellurite fiber pumped by 1 mW 200 fs pulses at 1.99 μm and 2.79 μm.

Tables (2)

Tables Icon

Table 1. Progress of Q -Switched Er 3 + and Ho 3 + -Doped ZBLAN Fiber Lasers during the Last Few Years

Tables Icon

Table 2. Progress of Mode-Locked Er 3 + and Ho 3 + -Doped ZBLAN Fiber Lasers during the Last Few Years

Metrics