Abstract

Metallic nanoparticles arranged in arrays have been shown to support both localized surface plasmons (LSPs) and diffractive grating behavior, related to the inter-particle period. By selecting both the period and particle size, it is possible to generate lattice modes that are caused by interference of the LSP and the grating Rayleigh anomaly. These hybrid modes show a Fano-like lineshape with reduced linewidth relative to the LSP mode. In this paper, we study the lattice modes supported by gold and aluminum nanoparticle arrays in the visible and UV, both experimentally and theoretically. The measured and simulated dispersion curves allow us to comprehensively analyze the details of the LSP coupling in the array. We show that when the spectral position of the Rayleigh anomaly, dependent on the period of the array, is slightly blue-shifted with respect to the LSP resonance, the quality factor of the lattice mode is significantly increased. We also provide evidence that the formation of the lattice modes critically depends on the incident light polarization, with maximum coupling efficiency between LSPs and the in-plane scattered light when the polarization direction is perpendicular to the propagation direction of the grazing wave. The results obtained provide design rules for high quality factor resonances throughout the visible and ultraviolet spectral ranges.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model

Barbora Špačková and Jiří Homola
Opt. Express 21(22) 27490-27502 (2013)

Diffractive coupling and plasmon-enhanced photocurrent generation in silicon

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. Nylandsted Larsen
Opt. Express 21(S5) A774-A785 (2013)

Hybrid plasmonic lattices with tunable magneto-optical activity

Mikko Kataja, Sara Pourjamal, Nicolò Maccaferri, Paolo Vavassori, Tommi K. Hakala, Mikko J. Huttunen, Päivi Törmä, and Sebastiaan van Dijken
Opt. Express 24(4) 3652-3662 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  5. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  6. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  7. D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
    [Crossref]
  8. F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
    [Crossref]
  9. J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
    [Crossref]
  10. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).
  11. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
    [Crossref]
  12. J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
    [Crossref]
  13. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
    [Crossref]
  14. M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
    [Crossref]
  15. N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photon. 8, 156–199 (2016).
    [Crossref]
  16. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
    [Crossref]
  17. B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 22167–22175 (2011).
    [Crossref]
  18. A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
    [Crossref]
  19. M. Meier, A. Wokaun, and P. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
    [Crossref]
  20. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B 3, 430–440 (1986).
    [Crossref]
  21. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [Crossref]
  22. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
    [Crossref]
  23. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref]
  24. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
    [Crossref]
  25. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
    [Crossref]
  26. W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
    [Crossref]
  27. A. Nikitin, T. Nguyen, and H. Dellaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
    [Crossref]
  28. J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
    [Crossref]
  29. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
    [Crossref]
  30. R. Czaplicki, A. Kiviniemi, J. Laukkanen, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Surface lattice resonances in second-harmonic generation from metasurfaces,” Opt. Lett. 41, 2684–2687 (2016).
    [Crossref]
  31. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
    [Crossref]
  32. G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
    [Crossref]
  33. G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
    [Crossref]
  34. F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
    [Crossref]
  35. F. J. G. de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
    [Crossref]
  36. F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [Crossref]
  37. M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
    [Crossref]
  38. M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
    [Crossref]
  39. Lumerical Solutions, “FDTD Solutions,” https://www.lumerical.com/tcad-products/fdtd .
  40. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  42. A. Aminian and Y. Rahmat-Samii, “Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures,” IEEE Trans. Antennas Propag. 54, 1818–1825 (2006).
    [Crossref]
  43. M. A. Lieb, J. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
    [Crossref]
  44. G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., Vol. XVI of Springer Series in Optical Sciences (Springer, 2012) pp. 269–316.
  45. J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
    [Crossref]
  46. J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
    [Crossref]
  47. F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
    [Crossref]
  48. J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
    [Crossref]

2016 (5)

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photon. 8, 156–199 (2016).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

R. Czaplicki, A. Kiviniemi, J. Laukkanen, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Surface lattice resonances in second-harmonic generation from metasurfaces,” Opt. Lett. 41, 2684–2687 (2016).
[Crossref]

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

2015 (5)

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

2014 (8)

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

2013 (5)

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

A. Nikitin, T. Nguyen, and H. Dellaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

2011 (4)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 22167–22175 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

2010 (2)

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[Crossref]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

2009 (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref]

2008 (1)

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

2006 (3)

A. Aminian and Y. Rahmat-Samii, “Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures,” IEEE Trans. Antennas Propag. 54, 1818–1825 (2006).
[Crossref]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

F. J. G. de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
[Crossref]

2005 (2)

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

2004 (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]

M. A. Lieb, J. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

1986 (1)

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adam, P.-M.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Akjouj, A.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Alabastri, A.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Albaladejo, S.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

Aminian, A.

A. Aminian and Y. Rahmat-Samii, “Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures,” IEEE Trans. Antennas Propag. 54, 1818–1825 (2006).
[Crossref]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

Andolfi, L.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Auguie, B.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Barnes, W. L.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Bisio, F.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Boltasseva, A.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Bonod, N.

Campillo, I.

Canepa, M.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Caputo, R.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Carron, K. T.

Chang, W.-S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Cheng, F.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Choi, J.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Czaplicki, R.

Dai, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

de Abajo, F. J. G.

F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

F. J. G. de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
[Crossref]

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Dellaporta, H.

A. Nikitin, T. Nguyen, and H. Dellaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

Dolado, J. S.

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Eskelinen, A.-P.

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Fernández-Domnguez, A. I.

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Fluhr, W.

Foerster, B.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

Gallinet, B.

Gérard, D.

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref]

Giglia, A.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Gómez Rivas, J.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref]

Gómez-Medina, R.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Gonella, G.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Gray, S. K.

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

Grzela, G.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

Gwo, S.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

Hakala, T. K.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

Halas, N. J.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Huttunen, M. J.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Julku, A.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

Kataja, M.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

Kauranen, M.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kim, C.

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Kim, D.-H.

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

King, N. S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Kiviniemi, A.

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Knight, M. W.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Kociak, M.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Kostcheev, S.

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., Vol. XVI of Springer Series in Optical Sciences (Springer, 2012) pp. 269–316.

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Kuittinen, M.

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Laroche, M.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

Laukkanen, J.

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Lehmann, H. W.

Lehtolahti, J.

Lérondel, G.

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., Vol. XVI of Springer Series in Optical Sciences (Springer, 2012) pp. 269–316.

Lévêque, G.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Li, G.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Li, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

Li, X.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

Li, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Liao, P.

Lieb, M. A.

Lieber, C. M.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Lin, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

Link, S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Liu, F.

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

Liu, L.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Liu, X.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Lu, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

Mahfoud, Z.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Mahi, N.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Maidecchi, G.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Maier, S. A.

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Manjavacas, A.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Marae-Djouda, J.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Martikainen, J.-P.

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

Martin, J.

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

Martin, O. J. F.

Mattera, L.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Maurer, T.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Meier, M.

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Mirkin, C. A.

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Moerland, R.

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

Moroni, R.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Naik, G.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Nannarone, S.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Neauport, J.

Nguyen, T.

A. Nikitin, T. Nguyen, and H. Dellaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

Nikitin, A.

A. Nikitin, T. Nguyen, and H. Dellaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

Nordlander, P.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Novotny, L.

Odom, T. W.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Olson, J.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

Plain, J.

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., Vol. XVI of Springer Series in Optical Sciences (Springer, 2012) pp. 269–316.

Proust, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3, 954–959 (2013).
[Crossref]

Qian, F.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Qiu, C.-W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Rahmat-Samii, Y.

A. Aminian and Y. Rahmat-Samii, “Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures,” IEEE Trans. Antennas Propag. 54, 1818–1825 (2006).
[Crossref]

Ramezani, M.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Rekola, H.

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

Rodrguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Ross, M. B.

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Sáenz, J. J.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

F. J. G. de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
[Crossref]

Schatz, G. C.

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Shalaev, V.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Shih, C.-K.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Su, P.-H.

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

Suh, J.

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Törmä, P.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

Väkeväinen, A.

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

van Dijken, S.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Vecchi, G.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref]

Verschuuren, M. A.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Wang, S.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

Wang, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Wasielewski, M.

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Wokaun, A.

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Xu, C.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

Yang, A.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Zaccaria, R. P.

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

Zavislan, J.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Zhang, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Zhang, X.

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zheng, B. Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

Zhou, W.

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6, 18301–18305 (2014).
[Crossref]

ACS Nano (3)

F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, and C.-K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10, 9852–9860 (2016).
[Crossref]

F. Bisio, R. P. Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8, 9239–9247 (2014).
[Crossref]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5, 4843–4849 (2011).
[Crossref]

Adv. Mater. (1)

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26, 6318–6323 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (1)

A. Nikitin, T. Nguyen, and H. Dellaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

Biosens. Bioelectron. (1)

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Aminian and Y. Rahmat-Samii, “Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures,” IEEE Trans. Antennas Propag. 54, 1818–1825 (2006).
[Crossref]

J. Chem. Phys. (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

J. Phys. D (2)

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
[Crossref]

Laser Photon. Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Light: Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodrguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2, e66 (2013).
[Crossref]

Nano Lett. (4)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

A. Väkeväinen, R. Moerland, H. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2013).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14, 4023-4029 (2014).
[Crossref]

Nanophotonics (1)

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2016).
[Crossref]

Nanoscale (1)

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

Nat. Commun. (3)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6, 7072 (2015).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014).

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Suh, C. Kim, M. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Phys. Rev. B (2)

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. USA 111, 14348–14353 (2014).
[Crossref]

Rev. Mod. Phys. (1)

F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

Other (4)

Lumerical Solutions, “FDTD Solutions,” https://www.lumerical.com/tcad-products/fdtd .

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., Vol. XVI of Springer Series in Optical Sciences (Springer, 2012) pp. 269–316.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the considered geometry: an array of metal nanoparticles deposited onto a dielectric substrate of refractive index n1. The superstrate can be air or a dielectric with refractive index n2. (b) AFM image of a square array of gold nanodisks with D=480  nm, d=160  nm, and h=50  nm. (c) Scanning electron microscopy image of an array of aluminum nanodisks with D=300  nm, d=120  nm, and h=50  nm.

Fig. 2.
Fig. 2.

Normal incidence extinction cross-section spectrum calculated with FDTD for a square array of gold nanodisks with diameter d=80  nm and thickness h=50  nm for different lattice periods (from 300 to 700 nm with a 10 nm step) in a homogeneous dielectric environment (n1=n2=1.5). Solid lines show the theoretical position of Rayleigh anomalies, and the dotted horizontal line is the position of the dipolar resonance from the isolated gold nanodisk.

Fig. 3.
Fig. 3.

Normalized electric field modulus maps for different lattice periods. The insets on the top of each of the columns are line cuts of Fig. 2, showing the extinction cross section σext versus wavelength for three different periods: D=300 (left column), D=500  nm (center column), and D=650  nm (right column). The arrows indicate the wavelengths where the field maps were calculated. (a) FDTD maps of the normalized electric field modulus computed in a plane located at mid-height of the metal nanoparticles for an array with D=300  nm at λ=620.3  nm. The black arrow denotes the incident polarization. The same field maps were computed for (b) D=500  nm and λ=619.9  nm; (c) D=500  nm and λ=754.8  nm; (d) D=650  nm and λ=615.1  nm; and (e) D=650  nm and λ=692.9  nm.

Fig. 4.
Fig. 4.

Linewidth engineering using lattice modes. (a) Calculated quality factor of the lattice mode of arrays of gold nanodisks as a function of the lattice period for different disk diameters at normal incidence. The dielectric environment is symmetric (n1=n2=1.5). (b) Same, with air as the superstrate (n2=1).

Fig. 5.
Fig. 5.

Experimental (a), (c) and simulated (b), (d) dispersion curves of the gold nanodisk arrays for s (a), (b) and p (c), (d) polarizations. The period of the array is D=480  nm, and the diameter of the nanodisks is d=180  nm. White lines represent the position of the Rayleigh anomalies computed using Eq. (1) with n1=1.52 and n2=1.52 (solid lines) or n2=1 (dotted lines).

Fig. 6.
Fig. 6.

Experimental (a), (b) and simulated (c)–(h) dispersion curves of the PMMA-covered gold nanodisk arrays for s and p polarizations. The period of the array is D=480  nm, and the diameter of the nanodisks is d=180  nm. White lines represent the position of the Rayleigh anomalies computed using Eq. (1) with n1=1.52 and n2=1.52 (solid lines) or n2=1 (dotted lines). The simulations were performed using three different geometries as pictured in the insets: (c), (d) a semi-infinite PMMA superstrate; (e), (f) a 180 nm thick PMMA layer onto the top of the substrate, and (g), (h) a 180 nm thick PMMA standing onto the top of the nanoparticles.

Fig. 7.
Fig. 7.

Experimental dispersion curves of PMMA-covered aluminum nanodisk arrays for (a)–(c) s-polarization and (d)–(f) p-polarization. The diameter of the nanoparticles is d=120  nm. The period of the array is (a), (d) D=250  nm; (b, e) D=300  nm; and (c), (f) D=350  nm. White lines represent the position of the glass/glass (solid lines) or glass/air (dotted lines), and Rayleigh anomalies were computed using Eq. (1).

Fig. 8.
Fig. 8.

Experimental dispersion curve of d=60  nm aluminum nanodisk arrays in the ultraviolet for s-polarization. The period of the array is D=260  nm. White lines represent the position of the glass/glass (solid lines) or glass/air (dotted lines) Rayleigh anomalies were computed using Eq. (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λm,p=Dn22(m2+p2)n12p2sin2θ±mn1sinθm2+p2,

Metrics