Abstract

In this paper, we theoretically propose and investigate a feasible experimental scheme to realize the dynamical Casimir effect (DCE) of phonons in an optomechanical setup formed by a ground-state precooled mechanical oscillator (MO) inside a Fabry–Perot cavity, which is driven by an amplitude-modulated classical laser field in the dispersive (far-detuned) regime. The time modulation of the driving field leads to the parametric amplification of the mechanical vacuum fluctuations of the MO, which results in the generation of Casimir phonons over time scales longer than the cavity lifetime. We show that the generated phonons exhibit quadrature squeezing, bunching effect, and super-Poissonian statistics, which are controllable by the externally modulated laser pump. In particular, we find that the scheme enables a perfect squeezing transfer from one mechanical quadrature to another when the laser frequency is varied from red detuning to blue detuning. Moreover, by analyzing the effect of the thermal noise of the MO environment, we find that there exists a critical temperature above which no phonon quadrature squeezing occurs. We also show that in the presence of time modulation of the driving laser, the linewidth narrowing of the displacement spectrum of the MO can be considered a signature of the generation of Casimir phonons.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical scheme for the realization of the sphere-coherent motional states in an atom-assisted optomechanical cavity

F. Bemani, R. Roknizadeh, and M. H. Naderi
J. Opt. Soc. Am. B 32(7) 1360-1368 (2015)

Squeezed thermal states: the result of parametric down conversion in lossy cavities

Hossein Seifoory, Sean Doutre, Marc. M. Dignam, and J. E. Sipe
J. Opt. Soc. Am. B 34(8) 1587-1596 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription