Abstract

The influence of cell length of a static diode-pumped Cs laser on laser power, gain medium temperature, and laser beam quality is studied theoretically using a 3D time-dependent computational fluid dynamics model where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams are assumed. Reasonable agreement with power measurements in a static diode-pumped alkali laser (DPAL) with 20 mm cell length [Electron. Lett. 44, 582 (2008) [CrossRef]  ] is obtained. It is shown that the gain medium temperature rise caused by the pump beam absorption can be decreased by increasing the length of the alkali cell and that, for given conditions, there is an optimal cell length corresponding to maximum laser power. At 100  W pump power the optimum cell length of 5060  mm is larger than the 20 mm length usually used in DPAL experiments. The increase of the cell length from 20 to 60 mm results in decrease of the gain medium temperature rise by 100–150°K, making it possible to avoid degradation of the laser power due to chemical reactions in the gain medium. Laser beam quality in terms of Strehl ratio was calculated as a function of pump power and length of the DPAL cell and found to decrease as the DPAL cell length is increased. It is shown that the wavefront corrections result in substantial increase of the Strehl ratio and hence in improvement of the laser beam quality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
General model of DPAL output power and beam quality dependence on pump beam parameters: experimental and theoretical studies

Ilya Auslender, Eyal Yacoby, Boris D. Barmashenko, and Salman Rosenwaks
J. Opt. Soc. Am. B 35(12) 3134-3142 (2018)

Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks
J. Opt. Soc. Am. B 30(5) 1118-1126 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription