Abstract

New methods to frequency down-convert a broadband near infrared frequency comb into the mid-infrared by three-wave mixing are studied. Modulation of the second-order nonlinear coefficient based on the concepts of either nonlinear spectral holography or quasi-periodic modulation enables us to obtain different spectral shapes of the mid-infrared comb. It includes flat and broadband single-band or dual-band spectra, or a shape that exhibits two or even three sharp peaks at chosen frequencies. The methods we present can be used to tailor the frequency comb spectra to selected molecular absorption lines in the mid-infrared.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy

Flavio C. Cruz, Daniel L. Maser, Todd Johnson, Gabriel Ycas, Andrew Klose, Fabrizio R. Giorgetta, Ian Coddington, and Scott A. Diddams
Opt. Express 23(20) 26814-26824 (2015)

High-coherence mid-infrared frequency comb

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale
Opt. Express 21(23) 28877-28885 (2013)

Broadband degenerate OPO for mid-infrared frequency comb generation

Nick Leindecker, Alireza Marandi, Robert L. Byer, and Konstantin L. Vodopyanov
Opt. Express 19(7) 6296-6302 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [Crossref]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [Crossref]
  3. P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
    [Crossref]
  4. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
    [Crossref]
  5. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra‐broadband radio‐frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
    [Crossref]
  6. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express 19, 3155–3162 (2011).
    [Crossref]
  7. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
    [Crossref]
  8. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [Crossref]
  9. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
    [Crossref]
  10. I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
    [Crossref]
  11. I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
    [Crossref]
  12. B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
    [Crossref]
  13. M. A. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive,” Optica 3, 311–317 (2016).
    [Crossref]
  14. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [Crossref]
  15. A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref]
  16. F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
    [Crossref]
  17. T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  18. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0  μm to 4.4  μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
    [Crossref]
  19. I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
    [Crossref]
  20. C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
    [Crossref]
  21. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
    [Crossref]
  22. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm,” Opt. Lett. 34, 1330–1332 (2009).
    [Crossref]
  23. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
    [Crossref]
  24. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
    [Crossref]
  25. H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
    [Crossref]
  26. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
    [Crossref]
  27. J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband Ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
    [Crossref]
  28. R. Shiloh and A. Arie, “Spectral and temporal holograms with nonlinear optics,” Opt. Lett. 37, 3591–3593 (2012).
    [Crossref]
  29. A. Leshem, R. Shiloh, and A. Arie, “Experimental realization of spectral shaping using nonlinear optical holograms,” Opt. Lett. 39, 5370–5373 (2014).
    [Crossref]
  30. W.-H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
    [Crossref]
  31. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
    [Crossref]
  32. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921 (2007).
    [Crossref]
  33. M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, “Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb,” Opt. Lett. 35, 565–567 (2010).
    [Crossref]
  34. A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
    [Crossref]
  35. G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
    [Crossref]
  36. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev. 4, 355–373 (2010).
    [Crossref]
  37. N. G. de Bruijn, “Algebraic theory of Penrose’s non-periodic tilings of the plane. I,” in Indagationes Mathematicae (Proceedings) (Elsevier, 1981), pp. 39–52.
  38. T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [Crossref]
  39. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.
  40. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  41. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
    [Crossref]

2016 (4)

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

M. A. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive,” Optica 3, 311–317 (2016).
[Crossref]

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

2014 (4)

2013 (2)

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
[Crossref]

2012 (4)

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband Ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
[Crossref]

R. Shiloh and A. Arie, “Spectral and temporal holograms with nonlinear optics,” Opt. Lett. 37, 3591–3593 (2012).
[Crossref]

2011 (5)

2010 (4)

2009 (3)

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[Crossref]

2008 (4)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

2007 (2)

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921 (2007).
[Crossref]

2005 (2)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

1999 (1)

T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

1980 (1)

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

1979 (1)

Adler, F.

Akikusa, N.

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

Allison, T. K.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Arie, A.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

A. Leshem, R. Shiloh, and A. Arie, “Experimental realization of spectral shaping using nonlinear optical holograms,” Opt. Lett. 39, 5370–5373 (2014).
[Crossref]

R. Shiloh and A. Arie, “Spectral and temporal holograms with nonlinear optics,” Opt. Lett. 37, 3591–3593 (2012).
[Crossref]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev. 4, 355–373 (2010).
[Crossref]

M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, “Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb,” Opt. Lett. 35, 565–567 (2010).
[Crossref]

G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
[Crossref]

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921 (2007).
[Crossref]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref]

Bahabad, A.

M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, “Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb,” Opt. Lett. 35, 565–567 (2010).
[Crossref]

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921 (2007).
[Crossref]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref]

Balslev-Clausen, D.

Bartalini, S.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
[Crossref]

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref]

Bartolini, P.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Beere, H.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Bjork, B. J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Borri, S.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref]

Bosenberg, W. R.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.

Campo, G.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

Cancio, P.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
[Crossref]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express 19, 3155–3162 (2011).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[Crossref]

Cancio Pastor, P.

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

Cappelli, F.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
[Crossref]

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

Changala, P. B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Chen, Y.

Consolino, L.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express 19, 3155–3162 (2011).
[Crossref]

Cossel, K. C.

Couillaud, B.

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

de Bruijn, N. G.

N. G. de Bruijn, “Algebraic theory of Penrose’s non-periodic tilings of the plane. I,” in Indagationes Mathematicae (Proceedings) (Elsevier, 1981), pp. 39–52.

De Natale, P.

Diddams, S.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Diddams, S. A.

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0  μm to 4.4  μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Doyle, J. M.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Eckardt, R. C.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.

Faist, J.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Fejer, M.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Fermann, M. E.

Galli, I.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
[Crossref]

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Ganany-Padowicz, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

Gayer, O.

G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
[Crossref]

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Giusfredi, G.

Gohle, C.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Hansch, T.

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Hänsch, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Hartl, I.

Heckl, O. H.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Hinkov, B.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Inguscio, M.

Jiang, J.

Johnson, T. A.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Juwiler, I.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

Kärtner, F. X.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Kirchner, M. S.

Krausz, F.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Langrock, C.

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Lee, W.-H.

Leshem, A.

Lifshitz, R.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921 (2007).
[Crossref]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref]

Liu, H.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Maddaloni, P.

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[Crossref]

Maidment, L.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Mazzotti, D.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, “High-coherence mid-infrared frequency comb,” Opt. Express 21, 28877–28885 (2013).
[Crossref]

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref]

Moses, J.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Myers, L. E.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.

Neely, T. W.

Oron, D.

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Patterson, D.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Pelc, J.

Peng, P.

Pfister, O.

Phillips, C.

Porat, G.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
[Crossref]

Pysher, M.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Rauschenberger, J.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Reber, M. A.

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Reid, D. T.

Ritchie, D.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Schliesser, A.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Schunemann, P. G.

Shiloh, R.

Silberberg, Y.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Spaun, B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Suchowski, H.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband Ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
[Crossref]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Taschin, A.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Thorpe, M. J.

Torre, R.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra‐broadband radio‐frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

Tredicucci, A.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Udem, T.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Vitiello, M.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Voloch, N.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev. 4, 355–373 (2010).
[Crossref]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921 (2007).
[Crossref]

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra‐broadband radio‐frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Yamanishi, M.

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

Ye, J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (4)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev. 4, 355–373 (2010).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra‐broadband radio‐frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, and J. Faist, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photon. Rev. 10, 623–630 (2016).
[Crossref]

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

Meas. Sci. Technol. (1)

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[Crossref]

Mol. Phys. (1)

I. Galli, S. Bartalini, P. Cancio Pastor, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Absolute frequency measurements of CO2 transitions at 4.3  μm with a comb-referenced quantum cascade laser,” Mol. Phys. 111, 2041–2045 (2013).
[Crossref]

Nat. Commun. (1)

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. Beere, D. Ritchie, R. Torre, and M. Vitiello, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref]

Nature (3)

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Opt. Commun. (1)

T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Opt. Express (3)

Opt. Lett. (11)

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41, 4261–4264 (2016).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5  μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref]

J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband Ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
[Crossref]

R. Shiloh and A. Arie, “Spectral and temporal holograms with nonlinear optics,” Opt. Lett. 37, 3591–3593 (2012).
[Crossref]

A. Leshem, R. Shiloh, and A. Arie, “Experimental realization of spectral shaping using nonlinear optical holograms,” Opt. Lett. 39, 5370–5373 (2014).
[Crossref]

G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35, 1401–1403 (2010).
[Crossref]

M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, “Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb,” Opt. Lett. 35, 565–567 (2010).
[Crossref]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39, 5050–5053 (2014).
[Crossref]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0  μm to 4.4  μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref]

Optica (1)

Phys. Rev. A (1)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Phys. Rev. Lett. (4)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Science (3)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, and T. Kentischer, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (2)

N. G. de Bruijn, “Algebraic theory of Penrose’s non-periodic tilings of the plane. I,” in Indagationes Mathematicae (Proceedings) (Elsevier, 1981), pp. 39–52.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3,” in Photonics West’96 (International Society for Optics and Photonics, 1996), pp. 216–226.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Nonlinear computer-generated Fourier holograms for three cases: two narrow and distant spectral peaks (top row); broad and flat spectral response (central row); two broad and flat bands (bottom row). Left column shows the spatial modulation of the crystal’s nonlinear coefficient along the propagation axis (grey) together with the required amplitude (blue) and phase (red) modulation. Right column shows the spectral response in each case.
Fig. 2.
Fig. 2. Left column: calculated spectral efficiency curves of the three quasi-periodic nonlinear converters. Dashed lines mark spatial frequencies at which high efficiency is required. Right column: illustration of nonlinear modulation patterns of three quasi-periodic gratings. Gratings are composed of either two or three building blocks, labeled A, B, and C. The white regions represent negative values of the nonlinear coefficient, whereas the black stripes represent positive values.
Fig. 3.
Fig. 3. Schematic of experimental apparatus. BS, beam splitter; DG, diffraction grating; DM, dichroic mirror; FA, fiber amplifier; NLC, nonlinear crystal; P, gold mirror; PLL, ECDL/NIR comb locking loop; PM, plane mirror; SM, spherical mirror.
Fig. 4.
Fig. 4. Bottom: experimental spectral line shape of the MIR combs (red line), resulting from the DFG process for each crystal channels, compared to the theoretical calculations (blue dotted line): (1) quasi-periodic dual-frequency converter; (2) narrow spectral hologram dual-frequency converter; (3) quasi-periodic triple-frequency converter; (4) quasi-periodic dual-frequency converter; (5) spectral hologram broadband converter; and (6) spectral hologram dual-band converter. Top: line intensities in the range of interest for the target molecular species: (a) C12O216 and C13O216; and (b) N142O16 and N14N15O16.
Fig. 5.
Fig. 5. Experimental spectral line shape of the MIR comb, resulting from the DFG process in crystal channel 4, with pump wavelength set at 841 nm (dotted line) and 845 nm (solid line).
Fig. 6.
Fig. 6. FFT amplitude of the idler radiation generated in channel 4. In the inset, the strong beatnote peak at 1.007 GHz is zoomed in a 50 Hz span; weaker sidebands are due to the locking system of the NIR comb repetition rate.
Fig. 7.
Fig. 7. Portion of the transmission peaks of a high-finesse cavity for one of the two narrow bands of the MIR idler generated in channel 4. Time scale on x axis is related to the frequency detuning of the cavity, due to its length scan. Peaks are not equally time-spaced due to the sinusoidal shape of the cavity length modulation.

Tables (3)

Tables Icon

Table 1. Schematic Representation of the Poling Design and Target Molecule for Each Channel of Nonlinear Crystal

Tables Icon

Table 2. Required Phase-Matching Frequencies and Size of the Building Blocks for Three Nonlinear Converters Based on Quasi-periodic Modulation

Tables Icon

Table 3. Average Output Power Measured for Each Channel of the MgO:CLN Crystal

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A3(Δk)=κA1A2d(z)eiΔkzdz,
d(z)=dijsign{cos[Δk0z+ϕ(z)]cos[πq(z)]},
UB(Δ˜k)=11+(Δ˜kΔkB)n,
UHG3(δ)=[8δ312δ]exp(δ22),
U(δ)=[UHG3(δ)]20,
U(Δ˜k)=[UHG3(Δ˜k)]20UB(Δ˜k),

Metrics