Abstract

In a wide-field surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) microscope, the sample is driven by surface plasmon polaritons supported on a thin gold film. Subsequent radiation at the anti-Stokes frequency is coupled through the gold layer onto a far-field camera, enabling the recording of surface-enhanced CARS images of structures in close proximity to the gold surface. The effective enhancement of the CARS signal can be as high as seven orders of magnitude, allowing CARS imaging at extraordinarily low light levels. In this work, we analyze the imaging properties of the SE-CARS microscope in detail, which are markedly different from the imaging properties of a point-scanning CARS microscope. Using a dipole model to describe the sample, we show that the strength of the signal and the appearance of coherent artifacts depend strongly on the geometry of the sample. We explain the observed radiation profile in the back focal plane and discuss representative imaging examples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-enhanced coherent anti-Stokes Raman imaging of lipids

Alexander Fast, John P. Kenison, Christopher D. Syme, and Eric O. Potma
Appl. Opt. 55(22) 5994-6000 (2016)

Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy

Ji-Xin Cheng, Andreas Volkmer, and X. Sunney Xie
J. Opt. Soc. Am. B 19(6) 1363-1375 (2002)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
    [Crossref]
  2. G. C. Schatz, “Theoretical studies of surface enhanced Raman scattering,” Acc. Chem. Res. 17, 370–376 (1984).
    [Crossref]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  5. J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
    [Crossref]
  6. C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
    [Crossref]
  7. J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
    [Crossref]
  8. S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
    [Crossref]
  9. S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
    [Crossref]
  10. H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
    [Crossref]
  11. H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
    [Crossref]
  12. D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
    [Crossref]
  13. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [Crossref]
  14. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref]
  15. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).
  16. C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
    [Crossref]
  17. Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
  18. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
    [Crossref]
  19. K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
    [Crossref]
  20. A. Fast, J. P. Kenison, C. D. Syme, and E. O. Potma, “Surface-enhanced coherent anti-Stokes Raman imaging of lipids,” Appl. Opt. 55, 5994–6000 (2016).
    [Crossref]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  22. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
    [Crossref]
  23. V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
    [Crossref]
  24. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  25. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
    [Crossref]
  26. A. Trache and G. A. Meininger, Total Internal Reflection Fluorescence (TIRF) Microscopy (Wiley, 2005).
  27. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987–5997 (2009).
    [Crossref]
  28. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807–12817 (2010).
    [Crossref]
  29. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
    [Crossref]
  30. G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
    [Crossref]
  31. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
    [Crossref]
  32. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
    [Crossref]
  33. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
    [Crossref]
  34. T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
    [Crossref]
  35. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
    [Crossref]
  36. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
    [Crossref]
  37. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
    [Crossref]
  38. A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
    [Crossref]
  39. J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
    [Crossref]
  40. C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
    [Crossref]
  41. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
    [Crossref]
  42. A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
    [Crossref]
  43. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
    [Crossref]
  44. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
    [Crossref]
  45. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14, 7878–7888 (2006).
    [Crossref]

2016 (2)

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

A. Fast, J. P. Kenison, C. D. Syme, and E. O. Potma, “Surface-enhanced coherent anti-Stokes Raman imaging of lipids,” Appl. Opt. 55, 5994–6000 (2016).
[Crossref]

2015 (1)

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

2014 (3)

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
[Crossref]

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

2013 (1)

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref]

2012 (3)

S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
[Crossref]

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
[Crossref]

2011 (3)

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

2010 (2)

C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807–12817 (2010).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

2009 (1)

2007 (3)

V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
[Crossref]

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[Crossref]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[Crossref]

2006 (2)

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14, 7878–7888 (2006).
[Crossref]

2005 (2)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

2004 (2)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[Crossref]

2003 (3)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[Crossref]

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

2002 (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[Crossref]

1997 (4)

L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
[Crossref]

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

1988 (1)

J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
[Crossref]

1986 (1)

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

1984 (2)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[Crossref]

G. C. Schatz, “Theoretical studies of surface enhanced Raman scattering,” Acc. Chem. Res. 17, 370–376 (1984).
[Crossref]

1979 (1)

C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[Crossref]

1977 (1)

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Alfonso-Garcia, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Apkarian, V. A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Auguié, B.

S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
[Crossref]

Axelrod, D.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[Crossref]

Banik, M.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Bao, K.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Baumberg, J. J.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

Boozer, C.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

Borejdo, J.

Boyd, G. T.

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[Crossref]

Calander, N.

Chang, C.-H.

Chang, C.-Y.

Chang, N.-S.

Chang, S.-H.

Chen, C. K.

C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[Crossref]

Chen, S.-J.

Cheng, J.-X.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[Crossref]

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).

Chiu, K.-C.

Cho, K.-C.

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cong, S.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

Corn, R. M.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
[Crossref]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Crampton, K. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Davis, C. C.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
[Crossref]

Day, J. K.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

de Castro, A. R. B.

C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[Crossref]

DeMartini, F.

C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[Crossref]

Dey, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Dieringer, J. A.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[Crossref]

Divan, R.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

Drezet, A.

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref]

Duyne, R. P. V.

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Etchegoin, P. G.

S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
[Crossref]

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Fast, A.

Fast, A. S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Fishman, D. A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Foley, J. J.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Genet, C.

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref]

Giergiel, J.

J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
[Crossref]

Gray, S. K.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

Gryczynski, I.

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14, 7878–7888 (2006).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[Crossref]

Gryczynski, Z.

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14, 7878–7888 (2006).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[Crossref]

Gu, Y.

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Guan, H.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

Guo, T.-F.

Halas, N. J.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

Halpern, A. R.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
[Crossref]

Harutyunyan, H.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

He, R.-Y.

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Hemminger, J. C.

J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
[Crossref]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[Crossref]

Hulkko, E.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

Isfort, G.

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[Crossref]

Johansson, P.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jung, H.-T.

H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
[Crossref]

Kall, M.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Kaminski, C. F.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

Kenison, J. P.

Kim, G.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kölbach, M.

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

Krishnamachari, V. V.

Ladani, F. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[Crossref]

Le Ru, E. C.

S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
[Crossref]

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Lettan, R. B.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[Crossref]

Li, H.

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Lieb, M. A.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Lin, C.-Y.

Liu, Y.

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Londergan, T.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

Lu, Z. H.

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Mahajan, S.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

Mait, J.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
[Crossref]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[Crossref]

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
[Crossref]

Meininger, G. A.

A. Trache and G. A. Meininger, Total Internal Reflection Fluorescence (TIRF) Microscopy (Wiley, 2005).

Meyer, S. A.

S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
[Crossref]

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

Michaels, C. A.

H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
[Crossref]

Miljkovic, V. D.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Neumann, O.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Nordlander, P.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Novotny, L.

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[Crossref]

L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
[Crossref]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Otto, A.

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Pohl, D.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

Potma, E. O.

A. Fast, J. P. Kenison, C. D. Syme, and E. O. Potma, “Surface-enhanced coherent anti-Stokes Raman imaging of lipids,” Appl. Opt. 55, 5994–6000 (2016).
[Crossref]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Reed, C. E.

J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
[Crossref]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Richter, L. J.

H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
[Crossref]

Rosenmann, D.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Schatz, G. C.

G. C. Schatz, “Theoretical studies of surface enhanced Raman scattering,” Acc. Chem. Res. 17, 370–376 (1984).
[Crossref]

Scheidt, K. A.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[Crossref]

Schierbaum, K.

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

Shegai, T.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Shen, Y. R.

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
[Crossref]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

Steuwe, C.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

Su, Y.-D.

Syme, C. D.

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[Crossref]

Trache, A.

A. Trache and G. A. Meininger, Total Internal Reflection Fluorescence (TIRF) Microscopy (Wiley, 2005).

Ushioda, S.

J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
[Crossref]

Van Duyne, R. P.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[Crossref]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

Volkmer, A.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[Crossref]

Wang, Y.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Wiederrecht, G. P.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

Wood, J. B.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
[Crossref]

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).

Xu, H.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Xu, S.

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Xu, W.

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Yampolsky, S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Yoo, H.-W.

H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
[Crossref]

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[Crossref]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[Crossref]

Zavislan, J. M.

Zerulla, D.

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

Zeytunyan, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

Zhen, Y.-R.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

Acc. Chem. Res. (1)

G. C. Schatz, “Theoretical studies of surface enhanced Raman scattering,” Acc. Chem. Res. 17, 370–376 (1984).
[Crossref]

ACS Nano (1)

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption,” ACS Nano 8, 1022–1030 (2014).
[Crossref]

Anal. Chem. (2)

S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS),” Anal. Chem. 83, 2337–2344 (2011).
[Crossref]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007).
[Crossref]

Annu. Rev. Biophys. Bioeng. (1)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[Crossref]

Appl. Opt. (1)

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
[Crossref]

Curr. Opin. Biotechnol. (1)

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400–405 (2006).
[Crossref]

Electrochim. Acta (1)

D. Zerulla, G. Isfort, M. Kölbach, A. Otto, and K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips,” Electrochim. Acta 48, 2943–2947 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[Crossref]

J. Electroanal. Chem. Interfacial Electrochem. (1)

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

J. Giergiel, C. E. Reed, J. C. Hemminger, and S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988).
[Crossref]

J. Phys. Chem. A (1)

S. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A 116, 1000–1007 (2012).
[Crossref]

J. Phys. Chem. B (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

J. Phys. Chem. C (1)

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

J. Raman Spectrosc. (1)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

Nano Lett. (2)

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[Crossref]

Nat. Commun. (1)

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).

Nat. Photonics (1)

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Opt. Express (3)

Phys. Rev. B (3)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (1997).
[Crossref]

Phys. Rev. Lett. (5)

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[Crossref]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
[Crossref]

C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Sci. Rep. (1)

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 9929 (2015).
[Crossref]

Science (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Thin Solid Films (1)

H. Li, S. Xu, Y. Liu, Y. Gu, and W. Xu, “Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna,” Thin Solid Films 520, 6001–6006 (2012).
[Crossref]

Vib. Spectrosc. (1)

H.-W. Yoo, L. J. Richter, H.-T. Jung, and C. A. Michaels, “Surface plasmon polariton Raman microscopy,” Vib. Spectrosc. 60, 85–91 (2012).
[Crossref]

Other (3)

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

A. Trache and G. A. Meininger, Total Internal Reflection Fluorescence (TIRF) Microscopy (Wiley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Sketch of the wide-field surface-enhanced CARS microscope. (a) The Stokes (1064 nm) and pump (tunable) beams are independently focused onto the bBFP of the objective lens. Radiation from the sample plane is projected onto an imaging EM-CCD camera. (b) The collimated Stokes and pump beams are incident onto the gold-coated coverslip at their respective Kretchmann angles.

Fig. 2.
Fig. 2.

Schematic of the simulated configuration. A dipole positioned at r is located in the space above the gold layer. Radiation of the dipole is collected through the gold layer in the glass medium on the surface of the lower far-field hemisphere ( radius = 1    m ).

Fig. 3.
Fig. 3.

Wide-field TPEF image obtained from clusters of coumarin dye on the gold layer in water. Fluorescence is induced by the 817 nm pump beam.

Fig. 4.
Fig. 4.

TPEF observed in the BFP. (a) The experiment using coumarin in water. (b) The simulation based on a random distribution of incoherent dipole emitters placed in the sample plane, 1 nm above the gold film. The BFP pattern in this case is independent of the dipole placement and resembles that of a single coherent dipole emitter.

Fig. 5.
Fig. 5.

Characteristics of the observed signal. (a) The power dependence of the pump (black squares) and Stokes (blue diamonds) beams. (b) The dependence of the observed signal as a function of the pulse overlap in time.

Fig. 6.
Fig. 6.

Spectral dependence of the surface-enhanced CARS signal. (a) A comparison of the CARS spectrum of the lipid collected in the wide-field, surface-enhanced configuration (red squares) and in the laser-scanning configuration (blue circles). (b) The multilamellar vesicle of DOPC on glass visualized at 2845    cm 1 in the laser-scanning imaging mode. (c) The GUV on the gold surface recorded at 2845    cm 1 in wide-field SE-CARS mode. (d) The transmission image of the GUV shown in (c). The scale bar is 5 μm.

Fig. 7.
Fig. 7.

Simulated CARS radiation of a driven dipole emitter into the lower half-space as a function of height above the interface. The intensities are rescaled in each case to highlight features in the emission pattern. (a) A dipole placed 1 nm above the gold surface. (b) A dipole placed 250 nm above the gold surface. (c) A dipole placed 1000 nm above the gold surface.

Fig. 8.
Fig. 8.

CARS radiation patterns from dipole emitters in the BFP. (a) A ssingle dipole 1 nm above the gold interface. (b) A dipole chain of 16 dipoles spaced 150 nm apart at a height of 1 nm above the gold layer, aligned perpendicular to the propagation direction. (c) A dipole chain of 16 dipoles spaced 150 nm apart at a height of 1 nm above the gold layer, aligned in the direction of propagation. (d) A 50 × 50 square array of dipoles 1 nm above the gold layer. The arrow indicates the direction of propagation of the surface excitation fields.

Fig. 9.
Fig. 9.

SE-CARS imaging in the BFP. (a) A BFP image of clusters of cholesteryl oleate on the gold surface at 2845    cm 1 . (b) A BFP image of the same sample when the pump and Stokes pulses are temporally detuned.

Fig. 10.
Fig. 10.

(a) Simulated chain of 32 dipoles spaced 150 nm apart. (b) A simulated image of a 3 μm diameter ring made up of dipoles spaced 150 nm apart. In both cases, the dipoles are placed 1 nm away from the gold surface. The field values are recorded on a 1 m radius glass hemisphere in the lower half-space and Fourier transformed to produce a real-space image.

Fig. 11.
Fig. 11.

Cholesteryl oleate lipid droplets in water. (a) An SE-CARS image at 2845    cm 1 . (b) An TPEF image obtained by blocking the Stokes beam. The scale bars are 20 μm.

Fig. 12.
Fig. 12.

Polystyrene structures in water. (a) An SE-CARS image at 2845    cm 1 . (b) An SE-CARS image at 2960    cm 1 . The scale bars are 5 μm.

Fig. 13.
Fig. 13.

MCF7 breast cancer cells. (a, c) A CARS image at 2845    cm 1 . (b, d) An overlay of the CARS and transmission images. The scale bar is 20 μm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E ( ω u ) = [ 1 0 k u , x / k u , z ] e i ( k u , x x + k u , z z ) ,
k spp = k 0 n 3 sin θ spp ,
θ spp = sin 1 { 1 n 3 ϵ 1 ϵ 2 ϵ 1 + ϵ 2 } .
p i ( 3 ) ( ω as , r ) = γ i j k l ( ω as , r ) E j ( ω p , r ) E k ( ω p , r ) E l * ( ω s , r ) ,
E d ( R ) = ω 2 ε 0 c 2 G ¯ ( R , r ) p ( 3 ) ,
E ( R ) = ω 2 ε 0 c 2 d V G ¯ ( R , r ) p ( 3 ) ,
I CARS = I Total I TPEF I TPEF .
G ¯ ( r , r ) = e i k 3 ( r + δ z / r ) e { i k 1 ( x x r + y y r z 1 ( n 3 / n 1 ) 2 ( ρ / r ) 2 ) } 4 π r × M ¯ ,
M ¯ = [ x 2 ρ 2 z 2 r 2 ϕ ( 2 ) + y 2 ρ 2 ϕ ( 3 ) x y ρ 2 z 2 r 2 ϕ ( 2 ) x y ρ 2 ϕ ( 3 ) x z r 2 ϕ ( 1 ) x y ρ 2 z 2 r 2 ϕ ( 2 ) x y ρ 2 ϕ ( 3 ) y 2 ρ 2 z 2 r 2 ϕ ( 2 ) + x 2 ρ 2 ϕ ( 3 ) y z r 2 ϕ ( 1 ) x z r 2 ϕ ( 2 ) y z r 2 ϕ ( 2 ) ( 1 z 2 r 2 ) ϕ ( 1 ) ] .
ϕ ( 1 ) = t P ( k ρ ) n 3 n 1 k 3 z / r k 1 2 k ρ 2 ,
ϕ ( 2 ) = t P ( k ρ ) n 3 n 1 ,
ϕ ( 3 ) = t S ( k ρ ) k 3 z / r k 1 2 k ρ 2 ,
t ( P , S ) = t 1,2 ( P , S ) t 2,3 ( P , S ) e ( i k 2 z d ) 1 + r 1,2 ( P , S ) r 2,3 ( P , S ) e ( 2 i k 2 z d ) ,
r ( P , S ) = r 1,2 ( P , S ) + r 2,3 ( P , S ) e ( 2 i k 2 z d ) 1 + r 1,2 ( P , S ) r 2,3 ( P , S ) e ( 2 i k 2 z d ) ,
r i , j S ( k ρ ) = μ j k z i μ i k z j μ j k z i + μ i k z j ,
r i , j P ( k ρ ) = ϵ j k z i ϵ i k z j ϵ j k z i + ϵ i k z j ,
t i , j S ( k ρ ) = 2 μ j k z i μ j k z i + μ i k z j ,
t i , j P ( k ρ ) = 2 ϵ j k z i ϵ j k z i + ϵ i k z j μ j ϵ i μ i ϵ j .

Metrics