Abstract

We report a specially configured open optical microcavity, imposing a spatially imbalanced gain–loss profile, to host an exclusively proposed next-nearest-neighbor resonance coupling scheme. Adopting the scattering matrix (S-matrix) formalism, the effect of interplay between such proposed resonance interactions and the incorporated non-Hermiticity in the microcavity is analyzed drawing a special attention to the existence of hidden singularities, namely exceptional points (EPs), where at least two coupled resonances coalesce. We establish adiabatic flip-of-state phenomenon of the coupled resonances in the complex frequency plane (k-plane), which is essentially an outcome of the fact that the respective EP is being encircled in the system parameter plane. Encountering such multiple EPs, the robustness of flip-of-states phenomena has been analyzed via continuous tuning of coupling parameters along a special hidden singular line which connects all the EPs in the cavity. Such a numerically devised cavity, incorporating the exclusive next neighbor coupling scheme, has been designed for the first time to study the unconventional optical phenomena in the vicinity of EPs.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription