Abstract

In optical tweezers, the trap stiffness varies across the sample area. To avoid this problem, the force measurement is often performed in a fixed place where the trap stiffness is well determined. However, for some experiments, bringing the sample to the fixed position is problematic. In this paper, we describe a precise and fast procedure for mapping the trap stiffness over the whole sample area. Such a map allows development of a real-time procedure for force measurement at any point of the sample area. The presented method is particularly suitable for measuring forces, for example, in living cells samples.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

9 December 2016: A correction was made to the pagination.


OSA Recommended Articles
Calibration of dynamic holographic optical tweezers for force measurements on biomaterials

Astrid van der Horst and Nancy R. Forde
Opt. Express 16(25) 20987-21003 (2008)

Accurate position tracking of optically trapped live cells

Niall McAlinden, David G. Glass, Owain R. Millington, and Amanda J. Wright
Biomed. Opt. Express 5(4) 1026-1037 (2014)

Multiple holographic optical tweezers parallel calibration with optical potential well characterization

Federico Belloni, Serge Monneret, Fabien Monduc, and Maxime Scordia
Opt. Express 16(12) 9011-9020 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription