Abstract

By controlling the optical force, optical tweezers can manipulate many kinds of small particles without mechanical contact. In the theoretical analysis of the optical force, conventional methods are based on the integration of the Maxwell stress tensor over the outer surface of the particle, while the Maxwell stress tensor is determined by the electromagnetic field distribution around the particle itself. However, we find that this conventional method may not be appropriate in most situations, as two main issues arise, especially for plasmonics nanoparticles because of the metal involved. The first is the selection of the relative permittivity on the interface between the particle and the background medium, while the second is the use of the divergence theorem. Here, we present an improved and more correct technique to compute the optical force of optical tweezers on the plasmonics nanoparticle. The analysis of an Au-Ag core–shell nanostructure, conducted by adopting this revised method, shows that the negative force is located not only at the Fano resonance but also at longer wavelengths.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical force calculations in arbitrary beams by use of the vector addition theorem

Olivier Moine and Brian Stout
J. Opt. Soc. Am. B 22(8) 1620-1631 (2005)

Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su
Opt. Express 24(5) 4801-4811 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription