Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of partial coherence on diffraction intensity of a Gaussian Schell-model beam using two-level atomic grating

Not Accessible

Your library or personal account may give you access

Abstract

The role of spatial coherence on diffraction intensity is investigated for a partially coherent incident Gaussian Schell-model beam which is diffracted from a two-level atomic grating. It is shown that the performance of the atomic grating is greatly influenced by the spectral coherence width of the partially coherent fields. It is observed that relatively large intensity of the diffracted light can be obtained via spatial coherence, beam width, interaction length, and mode index of partially coherent incident light. The scheme provides possibilities for the potential applications of atomic grating in lensless imaging using the partially coherent light field.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Goos–Hänchen shift of partially coherent light fields in double quantum dots

Muqaddar Abbas, Ziauddin, and Sajid Qamar
J. Opt. Soc. Am. B 34(2) 245-250 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.