Abstract

A serially coupled double microsphere resonator is investigated to reduce the nonfundamental resonances and therefore expand the resonance frequency spacing in microsphere resonator systems. Coupled-mode theory is used to model the system and investigate the resonator parameters as coupling efficiency. As a result, it is shown that the nonfundamental resonances in the output spectrum of a single 225 μm microsphere are reduced noticeably and therefore its minimum resonance frequency spacing is expanded from 5.2 pm to 0.6 nm by serially coupling to a 50 μm radius microsphere. Furthermore, it is shown that the quality factor of this resonator can reach 2.14×108, which is on the same order of a single 225 μm microsphere resonator. The model is verified by comparing the results of the model with the experimental results published by other groups to investigate induced transparency in the coupling of two microspheres.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu
Opt. Express 22(3) 3219-3227 (2014)

Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator

Luciano Mescia, Pietro Bia, Marco De Sario, Annalisa Di Tommaso, and Francesco Prudenzano
Opt. Express 20(7) 7616-7629 (2012)

Selective excitation of axial modes in a high-Q microcylindrical resonator for controlled and robust coupling

Xueying Jin, Yongchao Dong, and Keyi Wang
Appl. Opt. 54(27) 8100-8107 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription