Abstract

It is nontrivial to describe in theory the quantum behavior of a phase-sensitive heterodyne detector with a bichromatic local oscillator. On the one hand, a 3 dB noise penalty is expected for the detector due to the existence of an image band vacuum, which was assumed in a previous theoretical study. On the other hand, as a phase-sensitive device, the detector should be free of the 3 dB extra quantum noise, as verified by a recent experiment. However, the mechanism for the absence of the 3 dB noise penalty in the experimental observation remains unknown. To understand the relevant physics, we develop a comprehensive quantum theory, in agreement with experiment, for phase-sensitive heterodyne detection. This work should be important for us to understand the origin of the quantum noise in heterodyne detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of a phase-sensitive heterodyne detector

Heng Fan, Dechao He, and Sheng Feng
J. Opt. Soc. Am. B 32(10) 2172-2177 (2015)

Theory of noise minimization in direct and phase-sensitive photodetection

H. Fearn, R. Loudon, and T. J. Shepherd
J. Opt. Soc. Am. B 8(10) 2218-2223 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription