Abstract

Dynamic tuning of the plasmonic properties of graphene-based multilayer nanostructures provides a promising platform for the development of novel optoelectronic devices. In this paper, we numerically demonstrate that inserting an ultrathin dielectric buffer layer between monolayer graphene and a SiO2/Si substrate can result in highly tunable and confined low-loss mid-infrared surface plasmons. The characteristics of surface plasmons in the proposed device can be effectively controlled by changing the permittivity and thickness of the buffer layer, operation frequency, and chemical potential of graphene. In particular, we show that using nanometric buffer materials with dielectric constants lower than that of SiO2 can lead to a low propagation loss with better performance. In contrast, utilizing nanometric buffer materials with dielectric constants higher than that of SiO2 reduce the guided wavelength, resulting in a strong optical confinement. Moreover, increasing the operation frequency (chemical potential) leads to an increase (decrease) in propagation loss in the proposed structure.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate

Morteza Hajati and Yaser Hajati
J. Opt. Soc. Am. B 33(12) 2560-2565 (2016)

Ultra-compact beam splitter and filter based on a graphene plasmon waveguide

Junbo Yang, He Xin, Yunxin Han, Dingbo Chen, Jingjing Zhang, Jie Huang, and Zhaojian Zhang
Appl. Opt. 56(35) 9814-9821 (2017)

Mid-infrared active graphene nanoribbon plasmonic waveguide devices

Kelvin J. A. Ooi, Hong Son Chu, Lay Kee Ang, and Ping Bai
J. Opt. Soc. Am. B 30(12) 3111-3116 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription