Abstract

The potential of photonic force microscopy (PFM) for probing the optical near-field in the vicinity of a dielectric multilayer is demonstrated. An experimental study of Bloch surface waves (BSWs) using PFM is described in detail. The applied technique is based on measuring the BSW-induced gradient force acting on a probe particle combined with precise control of the distance between the particle and the multilayer surface. The BSW-induced potential profile measured using PFM is presented. The force interaction between the probe and the BSW evanescent field is numerically studied. The results indicate that a polystyrene particle with a diameter of 1 μm does not significantly perturb the BSW field and can be used to probe the optical near-field intensity in an elegant, noninvasive manner.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal

Daniil A. Shilkin, Evgeny V. Lyubin, Irina V. Soboleva, and Andrey A. Fedyanin
Opt. Lett. 40(21) 4883-4886 (2015)

Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna

T-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G.W. Burr, and T. Grosjean
Opt. Express 20(4) 4124-4135 (2012)

Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals

Emiliano Descrovi, Tristan Sfez, Lorenzo Dominici, Wataru Nakagawa, Francesco Michelotti, Fabrizio Giorgis, and Hans-Peter Herzig
Opt. Express 16(8) 5453-5464 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription