Abstract

Using a surface integral equation approach based on the tangential Poggio–Miller–Chang–Harrington–Wu–Tsai formulation, we present a full wave analysis of the resonant modes of 3D plasmonic nanostructures. This method, combined with the evaluation of second-harmonic generation, is then used to obtain a better understanding of their nonlinear response. The second-harmonic generation associated with the fundamental dipolar modes of three distinct nanostructures (gold nanosphere, nanorod, and coupled nanoparticles) is computed in the same formalism and compared with the other computed modes, revealing the physical nature of the second-harmonic modes. The proposed approach provides a direct relationship between the fundamental and second-harmonic modes in complex plasmonic systems and paves the way for an optimal design of double resonant nanostructures with efficient nonlinear conversion. In particular, we show that the efficiency of second-harmonic generation can be dramatically increased when the modes with the appropriate symmetry are matched with the second-harmonic frequency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response

Jérémy Butet, T. V. Raziman, Kuang-Yu Yang, Gabriel D. Bernasconi, and Olivier J. F. Martin
Opt. Express 24(15) 17138-17148 (2016)

Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures

Jérémy Butet and Olivier J. F. Martin
Opt. Express 22(24) 29693-29707 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription