## Abstract

We optimize the first and second intrinsic hyperpolarizabilities for a 1D piecewise linear potential dressed with Dirac delta functions for $N$ noninteracting electrons. The optimized values fall rapidly for $N>1$, but approach constant values of ${\beta}_{\mathrm{int}}=0.40$, ${\gamma}_{\mathrm{int}}^{+}=0.16$, and ${\gamma}_{\mathrm{int}}^{-}=-0.061$ above $N\gtrsim 8$. These apparent bounds are achieved with only two parameters with more general potentials achieving no better value. In contrast to previous studies, analysis of the Hessian matrices of ${\beta}_{\mathrm{int}}$ and ${\gamma}_{\mathrm{int}}$ taken with respect to these parameters shows that the eigenvectors are well aligned with the basis vectors of the parameter space, indicating that the parameterization was well-chosen. The physical significance of the important parameters is also discussed.

© 2016 Optical Society of America

Full Article | PDF Article**OSA Recommended Articles**

T. J. Atherton, J. Lesnefsky, G. A. Wiggers, and R. G. Petschek

J. Opt. Soc. Am. B **29**(3) 513-520 (2012)

Alexis Chacón and Camilo Ruiz

Opt. Express **26**(4) 4548-4562 (2018)

Mark C. Kuzyk and Mark G. Kuzyk

J. Opt. Soc. Am. B **25**(1) 103-110 (2008)