Abstract

We present a superconducting metamaterial saturable absorber at terahertz frequencies. The metamaterial was designed to have a resonant absorption peak at 0.5 THz for T=10  K. The absorber consists of an array of split ring resonators (SRRs) etched from a 100 nm YBa2Cu3O7 film. A polyimide spacer layer and gold ground plane are placed above the SRRs using the metamaterial tape concept, creating a reflecting perfect absorber. Increasing either the temperature or incident electric field (E) decreases the superconducting condensate density and corresponding kinetic inductance of the SRRs. This alters the impedance matching in the metamaterial, broadening the resonance and reducing the peak absorption. At low electric fields, the experimental absorption was optimized near 80% at f=0.47  THz for T=10  K and decreased to 20% for T=70  K. For E=40  kV/cm and T=10  K, the peak absorption was 70%, decreasing to 40% at 200 kV/cm, corresponding to a modulation of 43%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]

Xiaoguang Zhao, Jingdi Zhang, Kebin Fan, Guangwu Duan, Grace D. Metcalfe, Michael Wraback, Xin Zhang, and Richard D. Averitt
Photon. Res. 4(3) A16-A21 (2016)

Low loss and magnetic field-tunable superconducting terahertz metamaterial

Biaobing Jin, Caihong Zhang, Sebastian Engelbrecht, Andrei Pimenov, Jingbo Wu, Qinyin Xu, Chunhai Cao, Jian Chen, Weiwei Xu, Lin Kang, and Peiheng Wu
Opt. Express 18(16) 17504-17509 (2010)

Low-loss terahertz metamaterial from superconducting niobium nitride films

C. H. Zhang, J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, and P. H. Wu
Opt. Express 20(1) 42-47 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  4. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
    [Crossref]
  5. H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
    [Crossref]
  6. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
    [Crossref]
  7. P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573–23580 (2011).
    [Crossref]
  8. K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
    [Crossref]
  9. H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [Crossref]
  10. H. T. Chen, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref]
  11. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref]
  12. D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
    [Crossref]
  13. E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17, 16046–16058 (2009).
    [Crossref]
  14. G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
    [Crossref]
  15. Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
    [Crossref]
  16. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
    [Crossref]
  17. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
    [Crossref]
  18. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  19. G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
    [Crossref]
  20. G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
    [Crossref]
  21. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  22. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  23. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
  24. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
    [Crossref]
  25. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
    [Crossref]
  26. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
    [Crossref]
  27. O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
    [Crossref]
  28. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
    [Crossref]
  29. K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
    [Crossref]
  30. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
    [Crossref]
  31. P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
    [Crossref]
  32. S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
    [Crossref]
  33. C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
    [Crossref]
  34. C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
    [Crossref]
  35. M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
    [Crossref]
  36. A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).
  37. N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
    [Crossref]
  38. H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
    [Crossref]
  39. G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
    [Crossref]
  40. D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).
  41. H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A 81, 063823 (2010).
    [Crossref]
  42. P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).
  43. P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
    [Crossref]
  44. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
    [Crossref]
  45. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
    [Crossref]
  46. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
    [Crossref]
  47. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
    [Crossref]
  48. R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
    [Crossref]
  49. S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
    [Crossref]
  50. R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
    [Crossref]
  51. N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
    [Crossref]
  52. M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
    [Crossref]
  53. J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
    [Crossref]
  54. C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
    [Crossref]
  55. C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
    [Crossref]
  56. G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
    [Crossref]
  57. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
    [Crossref]
  58. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
    [Crossref]
  59. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [Crossref]

2015 (2)

D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

2014 (6)

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

2013 (10)

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
[Crossref]

2012 (6)

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

2011 (7)

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573–23580 (2011).
[Crossref]

C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
[Crossref]

2010 (4)

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A 81, 063823 (2010).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

2009 (5)

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]

E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17, 16046–16058 (2009).
[Crossref]

2008 (2)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

2007 (2)

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

2006 (3)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

H. T. Chen, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

2005 (1)

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]

2004 (1)

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
[Crossref]

2003 (1)

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]

2002 (1)

2001 (1)

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

1997 (1)

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

1996 (1)

1994 (1)

M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
[Crossref]

1990 (1)

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Acher, O.

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
[Crossref]

Akin, T.

Almasi, G.

Anlage, S. M.

D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).

P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]

C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
[Crossref]

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Averitt, R.

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Averitt, R. D.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

Azad, A. K.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Balakirev, F. F.

Basov, D. N.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Beigang, R.

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
[Crossref]

Bokor, J.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Bourouina, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Bozovic, I.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Brandt, N. C.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Brener, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Brorson, S. D.

Budiarto, E.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Buhleier, R.

Butz, S.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
[Crossref]

Campione, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

Cao, W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
[Crossref]

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Chaloupka, H.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Chen, H. T.

H. T. Chen, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Chen, H.-T.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[Crossref]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Chen, J.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Christen, D. K.

M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
[Crossref]

Cibella, S.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

Corson, J.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Di Ventra, M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Eckstein, J. N.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Ekmekci, E.

Faist, J.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

Fan, K.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Fan, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Fistul, M. V.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

Fu, Y. H.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Garcia-Pomar, J. L.

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
[Crossref]

Geng, K.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Glossner, A.

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Gorkunov, M. V.

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

Grady, N. K.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Gu, J.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Guo, H. C.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Habermeier, H. U.

Han, J.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

He, M.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Hebling, J.

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Hua, X.

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

Hwang, H. Y.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Ian, H.

H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A 81, 063823 (2010).
[Crossref]

Jia, Q. X.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Jia, X.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Jin, B.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

Jokerst, N. M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Jung, P.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Kadlec, E. A.

Kang, L.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
[Crossref]

Kawayama, I.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Kikuta, S.

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Kim, B.-J.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Kim, H.-T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Kivshar, Y. S.

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

Klabunde, C. E.

M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
[Crossref]

Klein, N.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Klein, U.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Koschny, T.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

Koshelets, V. P.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

Kozma, I.

Kuhl, J.

Kunchur, M. N.

G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
[Crossref]

M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
[Crossref]

Kwong, D. L.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lapine, M.

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Leoni, R.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

Leppäkangas, J.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

Liang, L.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

Liu, A. Q.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Liu, M.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Liu, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

Liu, Y.-X.

H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A 81, 063823 (2010).
[Crossref]

Lo, G. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Lobad, A. I.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Ludwig, C.

Luk, T. S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Maissen, C.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

Mallozzi, R.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Marques, R.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]

Martel, J.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]

Marthaler, M.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

Medina, F.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]

Mei, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Mesa, F.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Mukhanov, O.

D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).

Müller, G.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Müller, P.

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Murakami, H.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Nelson, K. A.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Nori, F.

H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A 81, 063823 (2010).
[Crossref]

O’Hara, J. F.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Orbach, S.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Orenstein, J.

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Orloff, N.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Padilla, W.

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Palit, S.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Peiniger, M.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

Perkins, B. G.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Phillips, J. M.

M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
[Crossref]

Piel, H.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Pilon, D. V.

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Powell, D. A.

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

Prozorov, R.

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

Rahm, M.

Reynet, O.

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
[Crossref]

Ricci, M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]

Ricci, M. C.

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

Roas, B.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Rodriguez, G.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Saracila, G. F.

G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
[Crossref]

Scalari, G.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

Schultz, L.

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Seren, H. R.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Shadrivov, I. V.

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

Shaner, E. A.

Shitov, S. V.

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Siders, J. L. W.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

Sinclair, M. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Singh, R.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Smith, D. R.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Soukoulis, C. M.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Sternbach, A.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

Strikwerda, A.

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Strikwerda, A. C.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Tanoto, H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Tao, J. F.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Tassin, P.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

Taylor, A. J.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

Teng, J. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Tian, Z.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Tonouchi, M.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Topalli, K.

Torchinsky, D.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Trepanier, M.

D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).

Trofimov, I. E.

Trugman, D.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Trugman, S. A.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

Tsai, D. P.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Turhan-Sayan, G.

Ustinov, A. V.

P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
[Crossref]

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
[Crossref]

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

Weis, P.

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

White, J. O.

Williams, G. P.

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Wraback, M.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

Wu, J.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

Wu, P.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

Xing, Q.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Yan, L.

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Yang, H.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Young, V.

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

Zhang, C.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Zhang, D.

D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).

Zhang, J.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

Zhang, J. B.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Zhang, J. W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Zhang, L.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

Zhang, W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

Zhang, X.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Zhang, X. H.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Zhang, X. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Zhao, X.

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Zhu, W. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Zhuravel, A. P.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
[Crossref]

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

Adv. Funct. Mater. (1)

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater. 21, 3589–3594 (2011).
[Crossref]

Adv. Mater. (2)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

Adv. Opt. Mater. (1)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]

Appl. Phys. Lett. (8)

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
[Crossref]

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]

G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett. 102, 062601 (2013).
[Crossref]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

J. Appl. Phys. (1)

N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]

J. Opt. (1)

S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Nat. Commun. (1)

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 3730 (2014).

Nat. Mater. (3)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2013).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]

Nature (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]

H. T. Chen, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

New J. Phys. (2)

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]

N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]

Opt. Express (6)

Phys. Rev. A (1)

H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits,” Phys. Rev. A 81, 063823 (2010).
[Crossref]

Phys. Rev. B (7)

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7-δ,” Phys. Rev. B 63, 140502 (2001).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]

C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators,” Phys. Rev. B 84, 104515 (2011).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]

G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies,” Phys. Rev. B 88, 024101 (2013).
[Crossref]

Phys. Rev. Lett. (9)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).
[Crossref]

K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs,” Phys. Rev. Lett. 110, 217404 (2013).
[Crossref]

M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on the superconducting transition in YBa2Cu3O7-δ,” Phys. Rev. Lett. 72, 752–755 (1994).
[Crossref]

G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
[Crossref]

Phys. Rev. X (1)

D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).

Physica C: Supercond. (1)

J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Sci. Rep. (1)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Supercond. Sci. Technol. (1)

P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]

Other (1)

A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz fields,” arXiv:1205.1684 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Expanded unit cell schematic of a reflecting perfect absorber with relevant dimensions. (b) Mask used to etch YBCO SRRs. (c) Etched YBCO SRRs.

Fig. 2.
Fig. 2.

(a) Real and (b) imaginary experimental conductivity of the prefabrication YBCO for varying temperature.

Fig. 3.
Fig. 3.

Experimental geometry for THz-TDS of the YBCO absorber. (a) Schematic of MM unit cell with etalon reflections (not to scale). (b) Simulated time domain signals from the absorber showing etalon reflections. The red circles mark the reflection used for this experiment.

Fig. 4.
Fig. 4.

(a) Simulated MM absorption spectrum for varying temperature. (b) Experimental absorption spectra at E = 20    kV / cm and varying temperature. The baseline oscillation is an artifact of an etalon reflection in the measurement.

Fig. 5.
Fig. 5.

Field dependence of the YBCO MM absorption spectrum at (a) 10 K, (b) 40 K, (c) 70 K, and (d) 100 K. E o = 200    kV / cm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A = 1 | t | 2 | r | 2 = 1 .
r = z z o z + z o ,
ϵ ( ω ) = ϵ + ω p 2 ω o 2 ω 2 i γ ω ,
z = μ ( ω o ) ϵ ( ω o ) = z o = 1 .
δ = c 2 ω ϵ 2 ,
σ ( ω , T ) = σ o [ f n ( T ) τ ( ω , T ) 1 i ω + f s ( T ) ( i ω + π δ ( ω ) ) ] ,
L k = i μ o ω σ 2 ( ω ) coth ( d s i μ o ω σ 2 ( ω ) ) , R eff = ω μ o 2 σ 1 ( ω ) .
ω o = 1 ( L + L k ) C R eff 2 4 ( L + L k ) 2 ,
A ( ω , T , E ) = 1 | r | 2 ( ω , T , E ) .

Metrics