Abstract

The repetition rate of an erbium-doped fiber comb is multiplied by an optical cavity for filtering, and the optical spectral distribution is broadened in a highly nonlinear fiber. For erbium-doped fiber combs, filtering cavities are commonly used to obtain the high-repetition-rate combs by the repetition rate multiplication. After the multiplication, optical spectral broadening by a highly nonlinear fiber is necessary for applications to optical frequency measurements in broad bandwidth and astronomy. In this study, the broadened spectrum covers over the range from 1050 to 2250 nm, which is over an octave so that the determination of the filtered mode numbers is feasible. The optical power of the broadened beam within a narrow optical bandwidth is also measured in the time domain and in the frequency domain to examine the broadening property.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arbitrary energy-preserving control of the line spacing of an optical frequency comb over six orders of magnitude through self-imaging

Hugues Guillet de Chatellus, Luis Romero Cortés, and José Azaña
Opt. Express 26(16) 21069-21085 (2018)

Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration

Ken Kashiwagi, Takashi Kurokawa, Yasushi Okuyama, Takahiro Mori, Yosuke Tanaka, Yoshinori Yamamoto, and Masaaki Hirano
Opt. Express 24(8) 8120-8131 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription