Abstract

Two schemes are presented for generating steady three-atom Greenberger–Horne–Zeilinger and W states in a strongly dissipative cavity via quantum feedback control. The quantum feedback control is only applied to a single atom based on quantum-jump detection to improve the fidelity of the target state. Thus, cavity decay plays a key role in obtaining the target state. The required interaction time need not be accurately controlled.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Entanglement dynamics of three atoms under quantum-jump-based feedback control

Li Chen, Hong-Fu Wang, and Shou Zhang
J. Opt. Soc. Am. B 30(3) 475-481 (2013)

One-step preparation of three-particle Greenberger–Horne–Zeilinger states in cavity quantum electrodynamics

Zi-hong Chen, Pei Pei, Feng-yang Zhang, and He-shan Song
J. Opt. Soc. Am. B 29(7) 1744-1749 (2012)

Engineering W-type steady states for three atoms via dissipation in an optical cavity

Xin-Yu Chen, Li-Tuo Shen, Zhen-Biao Yang, Huai-Zhi Wu, and Mei-Feng Chen
J. Opt. Soc. Am. B 29(6) 1535-1540 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription