Abstract

We analyze time-domain Talbot–Lau interferometry of organic cluster beams that are exposed to pulsed photodepletion gratings in the vacuum ultraviolet. We focus particularly on the analysis of the complex (phase and absorption) character of the optical elements. The discussion includes the role of wavefront distortions due to mirror imperfections on the nanometer level and the effect of finite coherence in the diffraction gratings. This improved understanding of the interferometer allows us to extract new information on optical properties of anthracene and ferrocene clusters and to define conditions for future matter-wave experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realization of optical carpets in the Talbot and Talbot-Lau configurations

William B. Case, Mathias Tomandl, Sarayut Deachapunya, and Markus Arndt
Opt. Express 17(23) 20966-20974 (2009)

High-order Talbot fringes for atomic matter waves

S. Nowak, Ch. Kurtsiefer, T. Pfau, and C. David
Opt. Lett. 22(18) 1430-1432 (1997)

Designing the phase grating for Talbot-Lau phase-contrast imaging systems: a simulation and experiment study

Jens Rieger, Pascal Meyer, Georg Pelzer, Thomas Weber, Thilo Michel, Jürgen Mohr, and Gisela Anton
Opt. Express 24(12) 13357-13364 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Patorski, The Self-Imaging Phenomenon and Its Applications (Elsevier, 1989), pp. 2–108.
  2. W. A. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4, 326–328 (1972).
    [Crossref]
  3. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
    [Crossref]
  4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
    [Crossref]
  5. M. Dennis, N. Zheludev, and F. Garc de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692–9700 (2007).
    [Crossref]
  6. V. M. Ginzburg and A. M. Andreyev, “Small static and dynamic target detection in nontransparent medium and opaque water,” Proc. SPIE 3373, 11–15 (1998).
  7. J. Clauser, De Broglie-Wave Interference of Small Rocks and Live Viruses (Kluwer Academic, 1997), pp. 1–11.
  8. B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
    [Crossref]
  9. J. F. Clauser and S. Li, “Talbot–von Lau atom interferometry with cold slow potassium,” Phys. Rev. A 49, R2213 (1994).
    [Crossref]
  10. L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
    [Crossref]
  11. S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
    [Crossref]
  12. M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
    [Crossref]
  13. B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
    [Crossref]
  14. K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
    [Crossref]
  15. R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
    [Crossref]
  16. V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
    [Crossref]
  17. O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
    [Crossref]
  18. S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
    [Crossref]
  19. P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
    [Crossref]
  20. N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).
  21. S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
    [Crossref]
  22. U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
    [Crossref]
  23. M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).
  24. A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
    [Crossref]
  25. C. J. Sansonetti, J. Reader, and K. Vogler, “Precision measurement of wavelengths emitted by a molecular fluorine laser at 157  nm,” Appl. Opt. 40, 1974–1978 (2001).
    [Crossref]
  26. S. Nimmrichter, Macroscopic matter-wave interferometry, thesis (Springer, 2014).
  27. K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
    [Crossref]
  28. F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
    [Crossref]
  29. S. Nimmrichter and K. Hornberger, “Macroscopicity of mechanical quantum superposition states,” Phys. Rev. Lett. 110, 160403 (2013).
    [Crossref]
  30. S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
    [Crossref]
  31. S. L. Adler and A. Bassi, “Is quantum theory exact?” Science 325, 275–276 (2009).
    [Crossref]
  32. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
    [Crossref]

2013 (3)

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

S. Nimmrichter and K. Hornberger, “Macroscopicity of mechanical quantum superposition states,” Phys. Rev. Lett. 110, 160403 (2013).
[Crossref]

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

2012 (1)

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

2011 (3)

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
[Crossref]

S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
[Crossref]

2010 (1)

V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
[Crossref]

2009 (2)

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[Crossref]

S. L. Adler and A. Bassi, “Is quantum theory exact?” Science 325, 275–276 (2009).
[Crossref]

2007 (2)

M. Dennis, N. Zheludev, and F. Garc de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692–9700 (2007).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[Crossref]

2005 (2)

K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref]

2002 (2)

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

2001 (3)

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
[Crossref]

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

C. J. Sansonetti, J. Reader, and K. Vogler, “Precision measurement of wavelengths emitted by a molecular fluorine laser at 157  nm,” Appl. Opt. 40, 1974–1978 (2001).
[Crossref]

2000 (1)

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

1999 (2)

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

1998 (1)

V. M. Ginzburg and A. M. Andreyev, “Small static and dynamic target detection in nontransparent medium and opaque water,” Proc. SPIE 3373, 11–15 (1998).

1997 (1)

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

1994 (1)

J. F. Clauser and S. Li, “Talbot–von Lau atom interferometry with cold slow potassium,” Phys. Rev. A 49, R2213 (1994).
[Crossref]

1972 (1)

W. A. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4, 326–328 (1972).
[Crossref]

Adler, S. L.

S. L. Adler and A. Bassi, “Is quantum theory exact?” Science 325, 275–276 (2009).
[Crossref]

Andreyev, A. M.

V. M. Ginzburg and A. M. Andreyev, “Small static and dynamic target detection in nontransparent medium and opaque water,” Proc. SPIE 3373, 11–15 (1998).

Arndt, M.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
[Crossref]

S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
[Crossref]

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

Bassi, A.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

S. L. Adler and A. Bassi, “Is quantum theory exact?” Science 325, 275–276 (2009).
[Crossref]

Bates, A. K.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Berman, P. R.

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

Bloomstein, T. M.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Brenner, V.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Brezger, B.

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
[Crossref]

Bunk, O.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[Crossref]

Cahn, S. B.

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

Clark, C.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Clauser, J.

J. Clauser, De Broglie-Wave Interference of Small Rocks and Live Viruses (Kluwer Academic, 1997), pp. 1–11.

Clauser, J. F.

J. F. Clauser and S. Li, “Talbot–von Lau atom interferometry with cold slow potassium,” Phys. Rev. A 49, R2213 (1994).
[Crossref]

Cloetens, P.

Cossart-Magos, C.

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

Cronin, A. D.

V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
[Crossref]

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[Crossref]

Danzl, J. G.

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

David, C.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref]

Deng, L.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Dennis, M.

Denschlag, J.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Diaz, A.

Dimicoli, I.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Dörre, N.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

Dubetsky, B.

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

Edwards, M.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Eibenberger, S.

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

Even, U.

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

Fedynyshyn, T. H.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Garc de Abajo, F.

Gerlich, S.

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Geyer, P.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

Ginzburg, V. M.

V. M. Ginzburg and A. M. Andreyev, “Small static and dynamic target detection in nontransparent medium and opaque water,” Proc. SPIE 3373, 11–15 (1998).

Goldfarb, F.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Gring, M.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Grisenti, R. E.

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

Gustavsson, M.

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

Hackermüller, L.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

Hagley, E. W.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Haller, E.

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

Haslinger, P.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
[Crossref]

S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
[Crossref]

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

Hegerfeldt, G. C.

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

Helmerson, K.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Holmgren, W. F.

V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
[Crossref]

Hornberger, K.

S. Nimmrichter and K. Hornberger, “Macroscopicity of mechanical quantum superposition states,” Phys. Rev. Lett. 110, 160403 (2013).
[Crossref]

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
[Crossref]

S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

Issendorff, B. v.

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

Ito, K.

K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
[Crossref]

Jortner, J.

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

Klauss, C. E.

V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
[Crossref]

Köhler, T.

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

Kumarakrishnan, A.

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

Kunz, R. R.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Lauber, K.

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

Lavie, N.

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

Li, S.

J. F. Clauser and S. Li, “Talbot–von Lau atom interferometry with cold slow potassium,” Phys. Rev. A 49, R2213 (1994).
[Crossref]

Liberman, V.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Lochan, K.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

Lohmann, W. A.

W. A. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4, 326–328 (1972).
[Crossref]

Lonij, V. P. A.

V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
[Crossref]

Mark, M. J.

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

Matsui, T.

K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
[Crossref]

Mayor, M.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

McMorran, B. J.

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[Crossref]

Millie, P.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Mons, M.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Müri, M.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Nägerl, H.-C.

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

Nairz, O.

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
[Crossref]

Nimmrichter, S.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

S. Nimmrichter and K. Hornberger, “Macroscopicity of mechanical quantum superposition states,” Phys. Rev. Lett. 110, 160403 (2013).
[Crossref]

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
[Crossref]

S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
[Crossref]

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

S. Nimmrichter, Macroscopic matter-wave interferometry, thesis (Springer, 2014).

Noy, D.

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

Parkinson, W.

K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
[Crossref]

Patorski, K.

K. Patorski, The Self-Imaging Phenomenon and Its Applications (Elsevier, 1989), pp. 2–108.

Petschinka, J.

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

Pfeiffer, F.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref]

Phillips, W.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Piuzzi, F.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Reader, J.

Rodewald, J.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

Rolston, S.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Rothschild, M.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Sansonetti, C. J.

Satin, S.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

Savas, T.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Schöllkopf, W.

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

Shim, U.

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

Silva, D. E.

W. A. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4, 326–328 (1972).
[Crossref]

Simsarian, J.

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Singh, T. P.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

Sleator, T.

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

Soep, B.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Stampanoni, M.

Stibor, A.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Switkes, M.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

Toennies, J. P.

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

Tramer, A.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Ulbricht, H.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

Uttenthaler, S.

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

Vogler, K.

Weitkamp, T.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref]

Yoshino, K.

K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
[Crossref]

Zeilinger, A.

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
[Crossref]

Zhao, Q.

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

Zheludev, N.

Ziegler, E.

Appl. Opt. (1)

Chem. Phys. (1)

F. Piuzzi, I. Dimicoli, M. Mons, P. Millie, V. Brenner, Q. Zhao, B. Soep, and A. Tramer, “Spectroscopy, dynamics and structures of jet formed anthracene clusters,” Chem. Phys. 275, 123–147 (2002).
[Crossref]

IBM J. Res. Dev. (1)

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Dev. 45, 605–614 (2001).
[Crossref]

J. Chem. Phys. (1)

U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1  K and He clusters formation,” J. Chem. Phys. 112, 8068–8071 (2000).
[Crossref]

J. Mol. Spectrosc. (1)

K. Yoshino, W. Parkinson, K. Ito, and T. Matsui, “Absolute absorption cross-section measurements of Schuhmann-Runge continuum of O2 at 90 and 295  K,” J. Mol. Spectrosc. 229, 238–243 (2005).
[Crossref]

Nat. Phys. (3)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules,” Nat. Phys. 3, 711–715 (2007).
[Crossref]

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9, 144–148 (2013).
[Crossref]

New J. Phys. (3)

M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. Nägerl, “Demonstration of the temporal matter-wave Talbot effect for trapped matter waves,” New J. Phys. 13, 085008 (2011).
[Crossref]

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[Crossref]

S. Nimmrichter, P. Haslinger, K. Hornberger, and M. Arndt, “Concept of an ionizing time-domain matter-wave interferometer,” New J. Phys. 13, 075002 (2011).
[Crossref]

Opt. Commun. (1)

W. A. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4, 326–328 (1972).
[Crossref]

Opt. Express (2)

Phys. Rev. A (2)

J. F. Clauser and S. Li, “Talbot–von Lau atom interferometry with cold slow potassium,” Phys. Rev. A 49, R2213 (1994).
[Crossref]

S. Nimmrichter, K. Hornberger, P. Haslinger, and M. Arndt, “Testing spontaneous localization theories with matter-wave interferometry,” Phys. Rev. A 83, 043621 (2011).
[Crossref]

Phys. Rev. Lett. (7)

S. Nimmrichter and K. Hornberger, “Macroscopicity of mechanical quantum superposition states,” Phys. Rev. Lett. 110, 160403 (2013).
[Crossref]

L. Deng, E. W. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, and W. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P. R. Berman, and B. Dubetsky, “Time-domain de Broglie wave interferometry,” Phys. Rev. Lett. 79, 784–787 (1997).
[Crossref]

B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002).
[Crossref]

R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler, “Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities,” Phys. Rev. Lett. 83, 1755 (1999).
[Crossref]

V. P. A. Lonij, C. E. Klauss, W. F. Holmgren, and A. D. Cronin, “Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials,” Phys. Rev. Lett. 105, 233202 (2010).
[Crossref]

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001).
[Crossref]

Proc. SPIE (1)

V. M. Ginzburg and A. M. Andreyev, “Small static and dynamic target detection in nontransparent medium and opaque water,” Proc. SPIE 3373, 11–15 (1998).

Rev. Mod. Phys. (2)

K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: Quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012).
[Crossref]

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471–527 (2013).
[Crossref]

Science (1)

S. L. Adler and A. Bassi, “Is quantum theory exact?” Science 325, 275–276 (2009).
[Crossref]

Other (5)

K. Patorski, The Self-Imaging Phenomenon and Its Applications (Elsevier, 1989), pp. 2–108.

M. Arndt, N. Dörre, S. Eibenberger, P. Haslinger, J. Rodewald, K. Hornberger, S. Nimmrichter, and M. Mayor, “Matter-wave interferometry with composite quantum objects,” in Atom Interferometry, G. Tino and M. Kasevich, eds. (IOS, 2014).

S. Nimmrichter, Macroscopic matter-wave interferometry, thesis (Springer, 2014).

N. Dörre, J. Rodewald, P. Geyer, B. v. Issendorff, P. Haslinger, and M. Arndt, “Photofragmentation beam splitters for matter-wave interferometry,” arXiv:quant-ph/1407.0919 (2014).

J. Clauser, De Broglie-Wave Interference of Small Rocks and Live Viruses (Kluwer Academic, 1997), pp. 1–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Setup for cluster interferometry using three pulsed, absorptive standing lightwave gratings. (a) Mirror deformations shift the nodes of the standing waves within the laser spot. This reduces the fringe visibility due to averaging over the phase-shifted interference patterns. This is indicated by the solid and dashed semiclassical paths for two particles that start with the same velocity and direction but at different positions. A mirror reflectivity R < 0.96 and limited laser coherence are the reasons why a running wave overlays the periodic gratings. The figure is drawn not to scale to illustrate the effects of minuscule mirror deformations. (b) Mass spectrum of ferrocene clusters that are detected after the third grating pulse using VUV photoionization in a time-of-flight mass spectrometer. We compare the interference signal S Int (blue dashed line) with a reference signal S Ref (red solid line), as shown in the inset for the model system Fc 7 . (c) The normalized signal contrast S N (see text) is shown for the clusters Fc 3 to Fc 9 .
Fig. 2.
Fig. 2. Theoretical visibility V for different values of the optical polarizability. (a) Contrast as a function of the pulse separation time T , in multiples of the Talbot time T T . It is plotted for varying phase shifts (polarizabilities) in the antinodes of the second standing wave ( Φ 0 ( 2 ) = 7.5 , dotted; Φ 0 ( 2 ) = 3 , dashed; Φ 0 ( 2 ) = 1.5 , solid). (b) Contrast as a function of Φ 0 ( 2 ) , i.e., for varying optical polarizability α λ , plotted for three different pulse separation times ( T = 0.75 T T , dashed; T = 0.9 T T , dotted, T = T T , solid). For T = T T , the particle polarizability does not affect the interference contrast at all, while at 0.75 T T the contrast oscillates with Φ 0 ( 2 ) . The arrows and colors link plot (a) with plot (b). For both panels, the transmission through all three gratings was fixed by setting n 0 ( i ) = 6.
Fig. 3.
Fig. 3. Measured interference contrast as a function of the mean number n 0 ( 2 ) of standing wave photons absorbed in the antinode of the second grating. (a) Interference measurements for three different laser energies reveal the shift of the maximal interference contrast toward higher masses for lower laser pulse energy. The triangles link the plots (a) and (b). (b) Normalized contrast for anthracene clusters of size N = 6 –9: Ac 6 (gray, dashed–dotted), Ac 7 (red, dotted), Ac 8 (light red, solid), Ac 9 (brown, dashed). The lines are fits based on the model discussed in the text. Error bars represent one standard deviation of statistical error.
Fig. 4.
Fig. 4. Quantum interference of ferrocene clusters from N = 6 9 . It is shown as a function of number of absorbed photons in G 2 , which is also a measure for the open fraction of the grating. Fc 6 (gray, dashed–dotted fit), Fc 7 (dark blue, dotted fit), Fc 8 (light blue, solid fit), Fc 9 (blue, dashed fit). Error bars represent one standard deviation of statistical error.

Tables (1)

Tables Icon

Table 1. Optical Parameters of Laser Grating and Molecular Clusters a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = ( 1 R ) I 0 + R [ 2 ( 1 C ) I 0 + 4 C I 0 cos 2 ( 2 π x λ ) ] .
t = 2 λ 0 λ / 2 exp [ n ( x ) ] d x = J 0 ( i n 0 2 ) exp [ n 0 ( 1 4 R C + 1 4 C ) ] J 0 ( i n 0 2 ) exp ( n 0 2 V λ ) .
Φ ( x ) = 4 π 2 α λ R C I 0 τ h c cos 2 ( 2 π x d ) Φ 0 ( 2 ) cos 2 ( 2 π x d ) ,
β = λ σ λ 8 π 2 α λ = n 0 ( i ) 2 Φ 0 ( i ) .
S ( Δ D ) = l = B l ( 1 ) ( 0 ) B 2 l ( 2 ) ( l T T T ) B l ( 3 ) ( 0 ) × exp [ 2 π i l d ( Δ D a T 2 ) ] ,
B n ( i ) ( ξ ) = exp ( n 0 ( i ) / 2 ) ( sin π ξ β cos π ξ sin π ξ + β cos π ξ ) n / 2 × J n [ sgn ( 1 β sin π ξ + cos π ξ ) × n 0 ( i ) 2 1 β 2 sin 2 π ξ cos 2 π ξ ] ,
V = max x [ S ( x ) ] max x [ S ( x ) ] max x [ S ( x ) ] + max x [ S ( x ) ] [ 0,1 ] .

Metrics