Abstract

We study the emission behavior of an electric dipolar nano-emitter coupled with a disk–ring nanostructure (DRN) that sustains multiple plasmonic Fano resonances. The emitter–DRN electromagnetic coupling efficiency strongly depends on the relative position of the nano-emitter and the DRN, which determines whether the multiple Fano interactions are visibly activated. More specifically, for longitudinal polarization, the multiple Fano resonances are pronounced when the nano-emitter is at the outer apex of the disk or at the gap center of the DRN, observable in the far-field and/or near-field characteristics. However, no obvious Fano feature shows up when the nano-emitter is near the outer apex of the ring. For the case in which the nano-emitter oscillates vertically with respect to the DRN axis, Fano resonance is dramatic only when the nano-emitter is inside the gap of the DRN. We show that the cascading amplification of the dipole moment by the nanodisk is crucial for the excitation of the multiple Fano resonances. Our results are useful in engineering plasmon-modified optical spectroscopy and photon emission control, particularly in resonant plasmonic heterostructures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [CrossRef]
  2. H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
    [CrossRef]
  3. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008).
    [CrossRef]
  4. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599–2606 (2013).
    [CrossRef]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef]
  6. Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
    [CrossRef]
  7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef]
  8. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef]
  9. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
    [CrossRef]
  10. H. S. Ee, S. K. Kim, S. H. Kwon, and H. G. Park, “Design of polarization-selective light emitters using one-dimensional metal grating mirror,” Opt. Express 19, 1609–1616 (2011).
    [CrossRef]
  11. Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).
  12. S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
    [CrossRef]
  13. Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
    [CrossRef]
  14. X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
    [CrossRef]
  15. W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
    [CrossRef]
  16. Z. Cao, R. Lu, Q. Wang, N. Tessema, Y. Jiao, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Cyclic additional optical true time delay for microwave beam steering with spectral filtering,” Opt. Lett. 39, 3402–3405 (2014).
    [CrossRef]
  17. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  18. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [CrossRef]
  19. Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
    [CrossRef]
  20. Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, ” Opt. Express 21, 6601–6608 (2013).
    [CrossRef]
  21. K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
    [CrossRef]
  22. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011).
    [CrossRef]
  23. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919–4921 (2012).
    [CrossRef]
  24. Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38, 4240–4243 (2013).
    [CrossRef]
  25. B. Y. Zhang and J. P. Guo, “Optical properties of a two-dimensional nanodisk array with super-lattice defects,” J. Opt. Soc. Am. B 30, 3011–3017 (2013).
    [CrossRef]
  26. B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010).
    [CrossRef]
  27. K. Choudhary, S. Adhikari, A. Biswas, A. Ghosal, and A. K. Bandyopadhyay, “Fano resonance due to discrete breather in nonlinear Klein–Gordon lattice in metamaterials,” J. Opt. Soc. Am. B 29, 2414–2419 (2012).
    [CrossRef]
  28. C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
    [CrossRef]
  29. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
    [CrossRef]
  30. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive simulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9, 2179–2189 (1992).
    [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  32. J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
    [CrossRef]
  33. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
    [CrossRef]
  34. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef]
  35. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
    [CrossRef]
  36. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
    [CrossRef]
  37. J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
    [CrossRef]
  38. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [CrossRef]
  39. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009).
    [CrossRef]
  40. N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
    [CrossRef]
  41. N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
    [CrossRef]
  42. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
    [CrossRef]
  43. Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
    [CrossRef]
  44. V. Giannini, J. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009).
    [CrossRef]
  45. L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
    [CrossRef]

2014 (3)

Z. Cao, R. Lu, Q. Wang, N. Tessema, Y. Jiao, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Cyclic additional optical true time delay for microwave beam steering with spectral filtering,” Opt. Lett. 39, 3402–3405 (2014).
[CrossRef]

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

2013 (13)

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, ” Opt. Express 21, 6601–6608 (2013).
[CrossRef]

Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38, 4240–4243 (2013).
[CrossRef]

B. Y. Zhang and J. P. Guo, “Optical properties of a two-dimensional nanodisk array with super-lattice defects,” J. Opt. Soc. Am. B 30, 3011–3017 (2013).
[CrossRef]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599–2606 (2013).
[CrossRef]

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

2012 (3)

2011 (6)

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

H. S. Ee, S. K. Kim, S. H. Kwon, and H. G. Park, “Design of polarization-selective light emitters using one-dimensional metal grating mirror,” Opt. Express 19, 1609–1616 (2011).
[CrossRef]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2006 (5)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

2005 (1)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

2004 (1)

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

2003 (2)

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

1992 (1)

1975 (1)

W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Adato, R.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Adhikari, S.

Agio, M.

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Altug, H.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Andreani, L. C.

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Arju, N.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Bandyopadhyay, A. K.

Bao, K.

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

Batteas, J. D.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Bigelow, N. W.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Biswas, A.

Blanco, L. A.

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Camden, J. P.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Cao, Z.

Chang, W. Y.

Chen, H. C.

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Chen, H. S.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Choudhary, K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

D’Agostino, S.

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

Dai, L.

Denkova, D.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Dorpe, P. V.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Dougherty, T. P.

Du, X. L.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Ee, H. S.

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Gallinet, B.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

Gammon, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Garíca de Abajo, F. J.

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Ghosal, A.

Giannini, V.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Guo, J. P.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Hao, Z. H.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Hong, M. H.

Jia, T. Q.

Jiang, C.

Jiang, C. Y.

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

Jiao, Y.

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Kaminski, F.

Katzer, D. S.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Khanikaev, A.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Khurgin, J. B.

Kiang, Y. W.

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Kim, S. K.

Koonen, A. M. J.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Kuo, M. K.

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Kuo, Y.

Kuznetsov, A.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Kwon, S. H.

Lagae, L.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Lai, T.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

Lee, L. P.

Li, X. Q.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Li, Z. L.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Liang, H. L.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Liaw, J. W.

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Liew, Y. F.

Lin, H. Q.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Liu, H.

Liu, Y. P.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Lopez-Tejeira, F.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Lu, R.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Lukiyanchuk, B.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Martin, O. J. F.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

Masiello, D. J.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Mei, Z. X.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Mertens, H.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Mirin, N.

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

Muskens, O. L.

Nelson, K. A.

Ng, B.

Nordlander, P.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Paniagua-Domínguez, R.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Park, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Park, H. G.

Park, Y.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Piermarocchi, C.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Polman, A.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Pravitasari, A.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Qu, X. G.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Rahmani, M.

Raymond, J. E.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Rivas, J. G.

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Ross, B. M.

Sala, F. D.

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

Sánchez-Gil, J.

Sánchez-Gil, J. A.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

Shah, N. C.

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Sham, L. J.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Shvets, G.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Siegfried, T.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Sigg, H.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Son, D. H.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Soref, R. A.

Stark, W. S.

W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
[CrossRef]

Steel, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Stievater, T. H.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Sun, G.

Sun, H. J.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Tang, B.

Tangdiongga, E.

Tavakkoli K. G., A.

Tessema, N.

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

van den Boom, H. P. A.

Van Duyne, R. P.

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Vaschillo, A.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Vercruysse, D.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Verellen, N.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Wang, Q.

Wang, Q. Q.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Wang, Y.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Wei, W. L.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Wiederrecht, G. P.

Wu, C.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Wu, L.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Wu, Y. R.

Wu, Y. W.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Xiao, J. J.

Xu, Z. Z.

Yang, C. C.

Yang, Z. J.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Yanik, A. A.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Yao, Y.

Zhang, B. Y.

Zhang, F. M.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Zhang, H. M.

Zhang, Q.

Zhang, X. M.

Zhang, X. Y.

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Zhang, Y.

Zhang, Z. S.

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

ACS Nano (2)

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Appl. Phys. A (1)

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

J. Comp. Physiol. (1)

W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
[CrossRef]

J. Opt. Soc. Am. B (7)

Mater. Today (1)

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Nano Lett. (4)

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

Nanoscale (2)

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Nanoscale Res. Lett. (1)

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (4)

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Plasmonics (1)

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

RSC Adv. (1)

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Science (1)

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Vib. Spectrosc. (1)

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic figure of the disk–ring nanostructure. The position of the nano-emitter is labeled by P1, P2, and P3, representing the three typical cases.

Fig. 2.
Fig. 2.

Comparison between the DRN and an individual disk under plane wave illumination. (a) Scattering spectra of the DRN (black solid curve) and of the single disk (black dashed curve). (b) Dipole moment amplitude and (c) phase of the disk in the DRN (solid curve) and of the single disk (dashed curve).

Fig. 3.
Fig. 3.

Fano resonance spectrum with a nano-emitter placed at P1. (a) Normalized radiative decay rate γr and (b) nonradiative decay rate γnr of the DRN (solid curve), the disk and ring in the DRN (dotted), and the isolated disk and the ring (dashed). (c) Dipole moment amplitude and (d) corresponding dipole moment phase of the disk in the DRN (solid) and a single disk (dashed). We use symbols a, c, e, and g to label the peaks and b, d, and f to label the dips in the dipole moment amplitude curve of the disk in the DRN in (c).

Fig. 4.
Fig. 4.

Near field for the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)], which are marked by the corresponding symbols in Fig. 3(c). The field amplitude is in logarithmic scale.

Fig. 5.
Fig. 5.

Similar to Fig. 3, though with the nano-emitter placed the gap center of the DRN (i.e., P2 in Fig. 1).

Fig. 6.
Fig. 6.

Near-field amplitude for the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)] in Fig. 5(c). The field amplitude is in logarithmic scale. The field strength around the disk reflects the magnitude of the induced dipole moment on it.

Fig. 7.
Fig. 7.

Similar to Fig. 3, though with the nano-emitter placed at the outer apex of the ring (i.e., P3 in Fig. 1).

Fig. 8.
Fig. 8.

Near-field distributions for wavelengths at the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)] in Fig. 7(c). The field amplitude is in logarithmic scale.

Fig. 9.
Fig. 9.

Optical spectra for the case of the nano-emitter oscillating along the x axis. (a), (b) Normalized decay rate (γr and γnr) and dipole moment amplitude, respectively, when the dipole emitter is at position P1. (c), (d) Same, for the case of the emitter at P2. (e), (f) Same, for the case of the emitter at P3.

Fig. 10.
Fig. 10.

Normalized electric field of eigenmode at the first plasmon peak (λ1). (a) Electric field distribution in the xoy plane. The field amplitude is in linear scale. (b) Electric field intensity along the axis of DRN.

Fig. 11.
Fig. 11.

Decay rate spectra dependence on the vertical offset h of the emitter for different x axis positions. The first column is for P1, the second column for P2, and the third column for P3.

Fig. 12.
Fig. 12.

Electric field of eigenmode at the first plasmon peak (λ1). (a) Eigenmode pattern in the yoz plane. The field amplitude is in linear scale. (b) Electric field with different h for the three configurations (emitter at P1, P2, and P3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pr=12Re[Sr(E×H*)·ds],
Pnr=12Re[Snr(E×H*)·ds],
p=1iωVdiskJd3r.
p=fD2+iγDff2(fR2+iγRff2)(fD2+iγDff2)C2Ae,

Metrics