Abstract

We theoretically put forward the Hermite-excited squeezed thermal states (HESTS) by applying operator Hermite polynomials on squeezed thermal states. Starting from the normally ordered density operator of squeezed thermal states and operator Hermite polynomials, the normalization factor is obtained, which is related to the Legendre polynomials. Several phase-space distribution functions, i.e., the Q function, P function, Wigner function (WF), and R function, are analytically derived. And the non-Gaussianity and nonclassicality are mainly reflected by the negativity of non-Gaussian WF and the existence of nonclassical depth. In addition, by deriving the normally ordered density operator and WF of HESTS in the laser channel, the decoherence effect is studied and discussed. Finally, the quantity in measuring non-Gaussianity is calculated to further quantitatively measure the non-Gaussianity of the resulting states.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription