Abstract

We experimentally investigated the use of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) as a saturable absorption material for passive Q-switching of a fiber laser at 1.56μm. Unlike previous TI-based Q-switched laser implementations that employed high-quality nanostructured TI saturable absorbers, we chose to use a bulk-structured Bi2Te3 TI film because it is easy to fabricate. Our saturable absorber was constructed by depositing a bulk-structured, 13μm thick Bi2Te3 TI film, which was prepared by using a mechanical exfoliation method, on the flat side of a side-polished fiber. The modulation depth of the evanescent field interaction-based saturable absorber was measured to be 10.8% at 1.56μm. Passively Q-switched pulses were readily obtained by incorporating the saturable absorber into an all fiberized erbium fiber-based ring cavity. The minimum temporal width was measured to be 2.81μs at a repetition rate of 42.8kHz. Through an output performance comparison between our Q-switched laser and recently demonstrated Q-switched fiber lasers incorporating nanostructured TI-based saturable absorbers, the pros and cons of our bulk-structured Bi2Te3 TI-based saturable absorbers were analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription