Abstract

We present a study of the properties of the transversal “spin angular momentum” and “orbital angular momentum” operators. We show that the “spin angular momentum” operators are generators of spatial translations that depend on helicity and frequency and that the “orbital angular momentum” operators generate transformations that are a sequence of this kind of translation and rotation. We give some examples of the use of these operators in light–matter interaction problems. Their relationship with the helicity operator allows us to involve electromagnetic duality symmetry in the analysis. We also find that simultaneous eigenstates of the three “spin” operators and parity define a type of standing mode that has recently been singled out for the interaction of light with chiral molecules. With respect to the relationship between “spin angular momentum,” polarization, and total angular momentum, we show that, except for the case of a single plane wave, the total angular momentum of the field is decoupled from its vectorial degrees of freedom even in the regime in which the paraxial approximation holds. Finally, we point out a relationship between the three “spin” operators and the spatial part of the Pauli–Lubanski four vector.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription