Abstract

We demonstrate coherence measurements of single-photon-level collective excitations of vibrational states using transient coherent spontaneous Raman scattering in liquid methanol. We observe the decay of the 1033cm1 mode and coherence oscillations due to simultaneous excitation of the 2834 and 2944cm1 modes. The coherence life-times and oscillation frequencies agree with frequency-domain line-shape measurements and femtosecond coherent anti-Stokes Raman scattering measurements. The demonstrated technique is complementary to and, in some cases, simpler than traditional stimulated spectroscopy techniques in that it does not require more than one laser and is free of nonresonant background.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).
  3. W. Tolles, J. Nibler, J. McDonald, and A. Harvey, “A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Spectrosc. 31, 253–271 (1977).
    [CrossRef]
  4. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292 (2009).
    [CrossRef]
  5. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
    [CrossRef]
  6. S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).
  7. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
    [CrossRef]
  8. M. D. Fayer, Ultrafast Infrared and Raman Spectroscopy, Vol. 26 of Practical Spectroscopy (Marcel Dekker, 2001).
  9. K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
    [CrossRef]
  10. F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
    [CrossRef]
  11. K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
    [CrossRef]
  12. L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.
  13. L. K. Iwaki and D. D. Dlott, “Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol,” J. Phys. Chem. A 104, 9101–9112 (2000).
    [CrossRef]
  14. Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012).
    [CrossRef]
  15. Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
    [CrossRef]
  16. D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
    [CrossRef]
  17. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
    [CrossRef]
  18. U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
    [CrossRef]
  19. R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
    [CrossRef]
  20. G. Garberoglio and R. Vallauri, “Instantaneous normal mode analysis of liquid methanol,” J. Chem. Phys. 115, 395 (2001).
    [CrossRef]
  21. P. Jedlovszky, “The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol and HF,” J. Chem. Phys. 113, 9113–9121 (2000).
    [CrossRef]
  22. U. Liddel and E. D. Becker, “Infrared spectroscopic studies of hydrogen bonding in methanol, ethanol and t-butanol,” Spectrochim. Acta 10, 70–84 (1957).
    [CrossRef]
  23. M. Matsumoto and K. E. Gubbins, “Hydrogen bonding in liquid methanol,” J. Chem. Phys. 93, 1981–1994 (1990).
    [CrossRef]
  24. H. Torii and M. Tasumi, “Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect,” J. Chem. Phys. 99, 8459–8465 (1993).
    [CrossRef]
  25. K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993).
    [CrossRef]

2013 (1)

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

2012 (2)

Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012).
[CrossRef]

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

2010 (1)

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

2009 (1)

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292 (2009).
[CrossRef]

2008 (1)

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

2006 (1)

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

2004 (1)

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

2001 (1)

G. Garberoglio and R. Vallauri, “Instantaneous normal mode analysis of liquid methanol,” J. Chem. Phys. 115, 395 (2001).
[CrossRef]

2000 (4)

P. Jedlovszky, “The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol and HF,” J. Chem. Phys. 113, 9113–9121 (2000).
[CrossRef]

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[CrossRef]

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[CrossRef]

L. K. Iwaki and D. D. Dlott, “Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol,” J. Phys. Chem. A 104, 9101–9112 (2000).
[CrossRef]

1999 (2)

S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

1993 (2)

H. Torii and M. Tasumi, “Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect,” J. Chem. Phys. 99, 8459–8465 (1993).
[CrossRef]

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993).
[CrossRef]

1990 (1)

M. Matsumoto and K. E. Gubbins, “Hydrogen bonding in liquid methanol,” J. Chem. Phys. 93, 1981–1994 (1990).
[CrossRef]

1978 (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

1977 (1)

1957 (1)

U. Liddel and E. D. Becker, “Infrared spectroscopic studies of hydrogen bonding in methanol, ethanol and t-butanol,” Spectrochim. Acta 10, 70–84 (1957).
[CrossRef]

Becker, E. D.

U. Liddel and E. D. Becker, “Infrared spectroscopic studies of hydrogen bonding in methanol, ethanol and t-butanol,” Spectrochim. Acta 10, 70–84 (1957).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Buck, U.

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[CrossRef]

Bustard, P. J.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

Cardini, G.

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

Chelli, R.

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

Chernyak, V.

S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).

Ciabatti, S.

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

Deàk, J. C.

L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.

Dlott, D. D.

L. K. Iwaki and D. D. Dlott, “Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol,” J. Phys. Chem. A 104, 9101–9112 (2000).
[CrossRef]

L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.

Fayer, M. D.

M. D. Fayer, Ultrafast Infrared and Raman Spectroscopy, Vol. 26 of Practical Spectroscopy (Marcel Dekker, 2001).

Garberoglio, G.

G. Garberoglio and R. Vallauri, “Instantaneous normal mode analysis of liquid methanol,” J. Chem. Phys. 115, 395 (2001).
[CrossRef]

Graener, H.

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993).
[CrossRef]

Gubbins, K. E.

M. Matsumoto and K. E. Gubbins, “Hydrogen bonding in liquid methanol,” J. Chem. Phys. 93, 1981–1994 (1990).
[CrossRef]

Harvey, A.

Hu, N.

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

Huisken, F.

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[CrossRef]

Iwaki, L. K.

L. K. Iwaki and D. D. Dlott, “Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol,” J. Phys. Chem. A 104, 9101–9112 (2000).
[CrossRef]

L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.

Jaksch, D.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Jedlovszky, P.

P. Jedlovszky, “The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol and HF,” J. Chem. Phys. 113, 9113–9121 (2000).
[CrossRef]

Johnson, J. C.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

Kaiser, W.

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Kalugin, N. G.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Knutsen, K. P.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

Kolomenskii, A.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Langford, N. K.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

Laubereau, A.

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993).
[CrossRef]

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Lee, K.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

Lee, K. C.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Lee, K. H.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Liddel, U.

U. Liddel and E. D. Becker, “Infrared spectroscopic studies of hydrogen bonding in methanol, ethanol and t-butanol,” Spectrochim. Acta 10, 70–84 (1957).
[CrossRef]

Lin, K.

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

Liu, S.

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

Lorenz, V.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

Lorenz, V. O.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Matsumoto, M.

M. Matsumoto and K. E. Gubbins, “Hydrogen bonding in liquid methanol,” J. Chem. Phys. 93, 1981–1994 (1990).
[CrossRef]

McDonald, J.

Michelberger, P.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

Miller, A. E.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

Mukamel, S.

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[CrossRef]

S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

Murawski, R.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Nibler, J.

Nunn, J.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Olivero, P.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Pestov, D.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Petersen, P. B.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

Piryatinski, A.

S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).

Prawer, S.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Procacci, P.

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

Reah, S. T.

L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.

Reim, K.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

Reim, K. F.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

Righini, R.

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

Rostovtsev, Y. V.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Sariyanni, Z.-E.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Sautenkov, V. A.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Saykally, R. J.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

Scully, M. O.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Shi, Q.

Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012).
[CrossRef]

Silberberg, Y.

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292 (2009).
[CrossRef]

Sokolov, A. V.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Spizziri, P.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Spizzirri, P.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

Sprague, M. R.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

Sun, Y.

Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012).
[CrossRef]

Surmacz, K.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Sussman, B. J.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Tasumi, M.

H. Torii and M. Tasumi, “Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect,” J. Chem. Phys. 99, 8459–8465 (1993).
[CrossRef]

Tolles, W.

Torii, H.

H. Torii and M. Tasumi, “Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect,” J. Chem. Phys. 99, 8459–8465 (1993).
[CrossRef]

Vallauri, R.

G. Garberoglio and R. Vallauri, “Instantaneous normal mode analysis of liquid methanol,” J. Chem. Phys. 115, 395 (2001).
[CrossRef]

Waldermann, F. C.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Walmsley, I.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

Walmsley, I. A.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Wang, Y.

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

Wolfrum, K.

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993).
[CrossRef]

Yu, Y.

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

Zheng, R.

Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012).
[CrossRef]

Zhi, M.

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Zhou, X.

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

Accounts Chem. Res. (1)

S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).

Annu. Rev. Phys. Chem. (2)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[CrossRef]

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292 (2009).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (2)

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993).
[CrossRef]

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004).
[CrossRef]

Chem. Rev. (1)

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[CrossRef]

Diam. Relat. Mater. (1)

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010).
[CrossRef]

J. Chem. Phys. (5)

R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999).
[CrossRef]

G. Garberoglio and R. Vallauri, “Instantaneous normal mode analysis of liquid methanol,” J. Chem. Phys. 115, 395 (2001).
[CrossRef]

P. Jedlovszky, “The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol and HF,” J. Chem. Phys. 113, 9113–9121 (2000).
[CrossRef]

M. Matsumoto and K. E. Gubbins, “Hydrogen bonding in liquid methanol,” J. Chem. Phys. 93, 1981–1994 (1990).
[CrossRef]

H. Torii and M. Tasumi, “Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect,” J. Chem. Phys. 99, 8459–8465 (1993).
[CrossRef]

J. Phys. Chem. A (2)

Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013).
[CrossRef]

L. K. Iwaki and D. D. Dlott, “Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol,” J. Phys. Chem. A 104, 9101–9112 (2000).
[CrossRef]

J. Phys. Chem. B (1)

Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012).
[CrossRef]

J. Raman Spectrosc. (1)

D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006).
[CrossRef]

Nat. Photonics (1)

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012).
[CrossRef]

Phys. Rev. B (1)

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Spectrochim. Acta (1)

U. Liddel and E. D. Becker, “Infrared spectroscopic studies of hydrogen bonding in methanol, ethanol and t-butanol,” Spectrochim. Acta 10, 70–84 (1957).
[CrossRef]

Other (4)

L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.

R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

M. D. Fayer, Ultrafast Infrared and Raman Spectroscopy, Vol. 26 of Practical Spectroscopy (Marcel Dekker, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the transient coherent spontaneous Raman scattering experiment. The BiBO crystal is inserted for data taken at the 2900cm1 lines. The inset is a model of the methanol molecule. BP, bandpass filter; L1-3, lens; MMF, multimode fiber.

Fig. 2.
Fig. 2.

(a) Exemplary background-subtracted (see text) interference spectra of the laser at τ=0.7ps. (b) Exemplary 1033cm1 background-subtracted Stokes signal at τ=0.7ps. (c) Absolute value of the Fourier-transformed Stokes signal for τ=0.7ps. (d) Absolute value of the Fourier-transformed Stokes signal for all time delays. (e) Data from (d) along t=|τ|, normalized by the Fourier-transformed laser signal, corresponding to the coherence decay of the 1033cm1 line as a function of time delay τ. The circles are the data, and the solid red line is a least-squares fit.

Fig. 3.
Fig. 3.

(a) Exemplary background-subtracted spectra of the laser at τ=0.7ps. (b) Exemplary 2900cm1 background-subtracted Stokes signal at τ=0.7ps. (c) Absolute value of the Fourier-transformed Stokes signal for τ=0.7ps. (d) Absolute value of the Fourier-transformed Stokes signal for all time delays. The vertical modulations along τ=0 arise from etaloning in the CCD camera. (e) Data from (d) along t=|τ|, normalized by the Fourier-transformed laser signal, corresponding to the coherence decay of the 2835 and 2942cm1 lines as a function of delay. The circles are the data; the solid red line is a least-squares fit.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

|Ψ=12[|ψ(0)|ϕ(0)+|ψ(τ)|ϕ(τ)].
|Ψ=12|ψ(0)[|ϕ(0)+α(τ)|ϕ(τ)]+β(τ)2|ψ(τ)|ϕ(τ).
ρϕ=Trψ|ΨΨ|=12|ϕ(0)ϕ(0)|+|α(τ)|2+|β(τ)|22|ϕ(τ)ϕ(τ)|+α*(τ)2|ϕ(0)ϕ(τ)|+α(τ)2|ϕ(τ)ϕ(0)|.
I(ω)=ω|ρϕ|ω=|f(ω)|2+α*(τ)2eiωτ|f(ω)|2+α(τ)2eiωτ|f(ω)|2.
I(ω)=|f(ω)|2[1+|α(τ)|cos(ωτ+θ)].
α(τ)=ψ(0)|ψ(τ)=|a|2eγ1τeiω1τ+|b|2eγ2τeiω2τ.
|I˜(τ)|=|α(τ)|={|a|4e2γ1τ+|b|4e2γ2τ+2|a|2|b|2e(γ1+γ2)τcos[(ω2ω1)τ]}12.
A+[B12e2|τ|/T2+B22e2|τ|/T2+B1B2e|τ|(1/T2+1/T2)cos(Δωτ)]1/2,

Metrics