Abstract

A quantum dot infrared (IR) photodetector based on intraband optical transitions among the various states within the valence band by considering the principle of electromagnetically induced transparency (EIT) is proposed and theoretically investigated. Absorption spectra of the probe beam and its dependence on the control beam and IR signal under the conditions of EIT have been studied. The incident IR signal itself does not generate any photocurrent. However, profound modification of the absorption characteristics of the probe beam by incident IR signal intensity leads to photocurrent generation in the proposed photodetector. Thermal characterization of the photodetector has been carried out through the evaluation of the temperature dependence of the quantum efficiency of the device.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Infrared detectors for the future,” Acta Physica Polonica A 116, 389–406 (2009).
  2. J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
    [CrossRef]
  3. W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
    [CrossRef]
  4. G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
    [CrossRef]
  5. C. Downs and T. E. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors 13, 5054–5098 (2013).
    [CrossRef]
  6. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990).
    [CrossRef]
  7. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
    [CrossRef]
  8. J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).
  9. V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
    [CrossRef]
  10. S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
    [CrossRef]
  11. V. Ryzhii, “Physical model and analysis of quantum dot infrared photodetectors with blocking layer,” J. Appl. Phys. 89, 5117–5124 (2001).
    [CrossRef]
  12. C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
    [CrossRef]
  13. G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
    [CrossRef]
  14. M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
    [CrossRef]
  15. S. F. Yelin and P. R. Hammer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells,” Phys. Rev. A 66, 013803 (2002).
    [CrossRef]
  16. S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
    [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  18. S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  19. W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
    [CrossRef]
  20. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  21. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  22. D. Sun and P.-C. Ku, “Slow light using p-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).
    [CrossRef]
  23. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
    [CrossRef]
  24. M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
    [CrossRef]
  25. A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology: Fundamentals and Applications, Vol. 77 of Lecture Notes in Electrical Engineering (Springer-Verlag, 2011).
  26. P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef]
  27. J. R. Hoff and M. Razeghi, “Effect of the spin split-off band on optical absorption in p-type Ga1-xInxAsyP1-y quantum-well infrared detectors,” Phys. Rev. B 54, 10773–10783 (1996).
    [CrossRef]
  28. J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
    [CrossRef]
  29. J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
    [CrossRef]
  30. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).
  31. S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
    [CrossRef]
  32. C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
    [CrossRef]
  33. Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
    [CrossRef]
  34. P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008).
    [CrossRef]
  35. V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
    [CrossRef]
  36. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).
  37. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [CrossRef]
  38. S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, 1992).
  39. M. Oloumi and C. C. Matthai, “Band offsets at InAs/GaAs interfaces,” J. Phys. Condens. Matter 1, SB211–SB212 (1989).
    [CrossRef]
  40. S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010).
    [CrossRef]
  41. S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
    [CrossRef]

2013 (6)

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

C. Downs and T. E. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors 13, 5054–5098 (2013).
[CrossRef]

C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
[CrossRef]

S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
[CrossRef]

C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
[CrossRef]

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

2011 (3)

M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
[CrossRef]

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
[CrossRef]

2010 (1)

S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010).
[CrossRef]

2009 (1)

A. Rogalski, “Infrared detectors for the future,” Acta Physica Polonica A 116, 389–406 (2009).

2008 (3)

M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
[CrossRef]

D. Sun and P.-C. Ku, “Slow light using p-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).
[CrossRef]

P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008).
[CrossRef]

2007 (2)

S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
[CrossRef]

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

2006 (1)

J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
[CrossRef]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2004 (1)

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

2003 (2)

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

2002 (2)

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

S. F. Yelin and P. R. Hammer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

2001 (6)

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
[CrossRef]

V. Ryzhii, “Physical model and analysis of quantum dot infrared photodetectors with blocking layer,” J. Appl. Phys. 89, 5117–5124 (2001).
[CrossRef]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
[CrossRef]

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

2000 (1)

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

1998 (1)

S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1996 (1)

J. R. Hoff and M. Razeghi, “Effect of the spin split-off band on optical absorption in p-type Ga1-xInxAsyP1-y quantum-well infrared detectors,” Phys. Rev. B 54, 10773–10783 (1996).
[CrossRef]

1990 (1)

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990).
[CrossRef]

1989 (1)

M. Oloumi and C. C. Matthai, “Band offsets at InAs/GaAs interfaces,” J. Phys. Condens. Matter 1, SB211–SB212 (1989).
[CrossRef]

1955 (1)

J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Abbasian, K.

M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
[CrossRef]

Adachi, S.

S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, 1992).

Antoszewski, J.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Ariyawansa, G.

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

Asadpour, S. H.

S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
[CrossRef]

Baghban, H.

A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology: Fundamentals and Applications, Vol. 77 of Lecture Notes in Electrical Engineering (Springer-Verlag, 2011).

Balic, V.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Bastard, G.

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990).
[CrossRef]

Bhattacharya, P.

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
[CrossRef]

Bir, G. L.

G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).

Bockelmann, U.

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Boucaud, P.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Braje, D. A.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Broquier, M.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Brunhes, T.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Chakrabarti, S.

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

Chen, X.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Chen, X. S.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
[CrossRef]

Chow, W. W.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

Crepin, C.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Dell, J. M.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Ding, R. J.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Downs, C.

C. Downs and T. E. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors 13, 5054–5098 (2013).
[CrossRef]

Faraone, L.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Gerard, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Gupta, S. K.

C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
[CrossRef]

C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
[CrossRef]

S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
[CrossRef]

J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
[CrossRef]

Hammer, P. R.

S. F. Yelin and P. R. Hammer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

Harris, S.

S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Harris, S. E.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

He, L.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Hoff, J. R.

J. R. Hoff and M. Razeghi, “Effect of the spin split-off band on optical absorption in p-type Ga1-xInxAsyP1-y quantum-well infrared detectors,” Phys. Rev. B 54, 10773–10783 (1996).
[CrossRef]

Hong, S.-C.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

Hu, W. D.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
[CrossRef]

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Ji, R.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Kala, H.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Kapoor, S.

S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010).
[CrossRef]

S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
[CrossRef]

J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
[CrossRef]

Kennerly, S. W.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
[CrossRef]

Khanmohamadi, H. H.

M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
[CrossRef]

Khmyrova, I.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Kim, J. O.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Kim, J.-W.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

Kohn, W.

J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Krishna, S.

P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008).
[CrossRef]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
[CrossRef]

Krishna, S. S.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Ku, P.-C.

Kumar, D.

C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
[CrossRef]

C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
[CrossRef]

Kumar, J.

C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
[CrossRef]

C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
[CrossRef]

S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010).
[CrossRef]

S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
[CrossRef]

J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
[CrossRef]

Kwok, K. Ng.

S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

Langbein, W.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Lao, Y.-F.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Lee, C. P.

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
[CrossRef]

Lin, S. D.

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
[CrossRef]

Liu, H. C.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Lu, W.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
[CrossRef]

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Luttinger, J. M.

J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Majd, A. E.

S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Martyniuk, P.

P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008).
[CrossRef]

Matthai, C. C.

M. Oloumi and C. C. Matthai, “Band offsets at InAs/GaAs interfaces,” J. Phys. Condens. Matter 1, SB211–SB212 (1989).
[CrossRef]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

Mitin, V.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Negi, C. M. S.

C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
[CrossRef]

C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
[CrossRef]

Oh, J.-E.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

Oloumi, M.

M. Oloumi and C. C. Matthai, “Band offsets at InAs/GaAs interfaces,” J. Phys. Condens. Matter 1, SB211–SB212 (1989).
[CrossRef]

Ortega, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Park, C.-H.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

Perera, A. G. U.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

Phillips, M. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

Pikus, G. E.

G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).

Pipa, V.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

Rasooli, H.

A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology: Fundamentals and Applications, Vol. 77 of Lecture Notes in Electrical Engineering (Springer-Verlag, 2011).

Razeghi, M.

J. R. Hoff and M. Razeghi, “Effect of the spin split-off band on optical absorption in p-type Ga1-xInxAsyP1-y quantum-well infrared detectors,” Phys. Rev. B 54, 10773–10783 (1996).
[CrossRef]

Rogalski, A.

A. Rogalski, “Infrared detectors for the future,” Acta Physica Polonica A 116, 389–406 (2009).

P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008).
[CrossRef]

Rostami, A.

M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
[CrossRef]

M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
[CrossRef]

A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology: Fundamentals and Applications, Vol. 77 of Lecture Notes in Electrical Engineering (Springer-Verlag, 2011).

Ryzhii, M.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Ryzhii, V.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

V. Ryzhii, “Physical model and analysis of quantum dot infrared photodetectors with blocking layer,” J. Appl. Phys. 89, 5117–5124 (2001).
[CrossRef]

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Saghai, H. R.

M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
[CrossRef]

M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
[CrossRef]

Sauvage, S.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Schneider, H. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Schuler-Sandy, T.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Sen, P. K.

S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010).
[CrossRef]

S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
[CrossRef]

J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
[CrossRef]

Shi, Y.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Soleimani, H. R.

S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
[CrossRef]

Soltani, A.

S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
[CrossRef]

Stiff, A. D.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
[CrossRef]

Su, X. H.

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

Sun, D.

Sze, S. M.

S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

Tian, Z.-B.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Umana-Membreno, G. A.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

Vandervelde, T. E.

C. Downs and T. E. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors 13, 5054–5098 (2013).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

Wang, J.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Wang, L.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Wang, S. Y.

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
[CrossRef]

Wang, T. M.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Willander, M.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Wolde, S.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Wu, H. W.

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
[CrossRef]

Xu, F.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Yamamoto, Y.

S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Ye, Z. H.

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
[CrossRef]

Yelin, S. F.

S. F. Yelin and P. R. Hammer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

Yin, G. Y.

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Yoo, T.-K.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

Zhang, Y. H.

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

Zhao, J.

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

Zyaei, M.

M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
[CrossRef]

M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
[CrossRef]

Acta Physica Polonica A (1)

A. Rogalski, “Infrared detectors for the future,” Acta Physica Polonica A 116, 389–406 (2009).

Appl. Phys. Lett. (4)

J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011).
[CrossRef]

W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011).
[CrossRef]

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001).
[CrossRef]

Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013).
[CrossRef]

IEEE Electron Device Lett. (1)

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).

IEEE J. Quantum Electron. (2)

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001).
[CrossRef]

C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013).
[CrossRef]

Infrared Phys. Technol. (1)

G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007).
[CrossRef]

Int. J. Mod. Phys. B (1)

S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013).
[CrossRef]

J. Appl. Phys. (3)

V. Ryzhii, “Physical model and analysis of quantum dot infrared photodetectors with blocking layer,” J. Appl. Phys. 89, 5117–5124 (2001).
[CrossRef]

P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008).
[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

J. Electron. Mater. (1)

G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Condens. Matter (1)

M. Oloumi and C. C. Matthai, “Band offsets at InAs/GaAs interfaces,” J. Phys. Condens. Matter 1, SB211–SB212 (1989).
[CrossRef]

Nanotechnology (1)

S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007).
[CrossRef]

Opt. Commun. (1)

M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008).
[CrossRef]

Phys. Rev. (1)

J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Phys. Rev. A (3)

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

S. F. Yelin and P. R. Hammer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

Phys. Rev. B (4)

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990).
[CrossRef]

J. R. Hoff and M. Razeghi, “Effect of the spin split-off band on optical absorption in p-type Ga1-xInxAsyP1-y quantum-well infrared detectors,” Phys. Rev. B 54, 10773–10783 (1996).
[CrossRef]

J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006).
[CrossRef]

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Physica E (1)

S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010).
[CrossRef]

Prog. Electromagn. Res. B (1)

M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Semicond. Sci. Technol. (2)

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Sensors (1)

C. Downs and T. E. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors 13, 5054–5098 (2013).
[CrossRef]

Superlattices Microstruct. (1)

C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013).
[CrossRef]

Other (5)

G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).

S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology: Fundamentals and Applications, Vol. 77 of Lecture Notes in Electrical Engineering (Springer-Verlag, 2011).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Energy schematic diagram of a four-level system with probe field of frequency ωp, IR signal of frequency ωs, and coupling field of frequency ωc.

Fig. 2.
Fig. 2.

Absorption spectra of the probe field at T=250K. Curves B, C, D, and E are for control powers of 0, 0.4, 5, and 100 mW, respectively.

Fig. 3.
Fig. 3.

Absorption spectra of the probe beam as a function of wavelength at different temperatures. The control beam power is 0.4 mW. The dephasing times are taken to be 16, 11, and 8 ps at 10 K, 150 K, and 275 K, respectively [39].

Fig. 4.
Fig. 4.

Absorption coefficient as a function of the probe energy at T=250K. The control beam power is 8 mW. Curves B, C, and D are for IR signal powers of 0.5, 5, and 50 mW, respectively.

Fig. 5.
Fig. 5.

Absorption spectra as a function of (a) detuning of the coupling field and (b) detuning of the IR signal at 275 K. The IR signal and coupling field powers are taken to be 5 and 50 mW, respectively.

Fig. 6.
Fig. 6.

Peak absorption coefficient of probe beam versus incident IR signal powers under excitation of different control signal powers.

Fig. 7.
Fig. 7.

Photocurrent as a function of the applied voltage under excitation of different IR signal powers at 275 K. The coupling field power is taken to be 60 mW.

Fig. 8.
Fig. 8.

Responsivity as a function of incident optical power for different values of bias voltage at 275 K. The coupling field power is taken to be 100 mW.

Fig. 9.
Fig. 9.

Quantum efficiency versus incident IR signal power for three temperatures [curve (a), 10 K; curve (b), 150 K; and curve (c), 275 K]. The control beam powers for the curves encircled by solid circle I, dashed circle II, and dotted circle III are taken to be 0.4, 5, and 50 mW, respectively.

Fig. 10.
Fig. 10.

Quantum efficiency as a function of incident IR signal power for different values of QD height at 250 K. The coupling field power is taken to be 25 mW.

Tables (1)

Tables Icon

Table 1. Material Parameters for InAs and GaAs

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

H=[HhhSR0SHlh0RR0HlhS0RSHhh]+{V(x,y)+V(z)}I+HS.
Hhh=22m0[(γ12γ2)2z2+(γ1+γ2)[2x2+2y2]],
Hlh=22m0[(γ1+2γ2)2z2+(γ1γ2)[2x2+2y2]],
R=322m0γ2z(xiy),
S=322m0γ3(xiy)2,
V(x,y)=12αxx2+12αyy2.
Hs=[Ev10000Ev20000Ev20000Ev1].
Ev1=δEh+δEs,
Ev2=(δEh+δEs)2δEs2Δ0,
δEh=[2av(C11C12C11)ε],
δEs=[b(C11+2C12C11)ε],
|Ψnυ=nan,nϕn(x,y)χn(z)umjv.
μnn=ψnν|ex|ψnν=n,nan,nIn,neumjν|umjν,
Inn=ϕnxv(x)xϕnxv(x)dx×ϕnyv(y)ϕnyv(y)dyχnz(z)χnz(z)dz.
|ψ(t)=a1(t)|1+a2(t)ei(δω2)t|2+a3(t)ei(δω3)t|3+a4(t)ei(ωp)t|4,
H=ω1|11|+ω2ei(δω2)t|22|+ω3ei(δω3)t|3+ω4ei(ωp)t|44|+Ωp|14|+Ωc|24|+Ωs|23|,
a1·=iΩpa4,
a2·iΔωca2=iΩsa3+iΩc*a4,
a3·iΔωsa3=iΩs*a2,
a4·iΔωpa4=iΩpa1+iΩca2,
a4=Ωp(Ωs2ΔωcΔωs)(ΔωcΔωsΔωpΩs2ΔωpΩc2Δωs).
p^=ψ(1)|μ^|ψ(4)=1|μ^|4a4ei(ωp)t=μ14a4ei(ωp)t.
χ1(ωp)=N|μ14|2(Ωs2Δωc˜Δωs˜)E0(Δωc˜Δωs˜Δωp˜Ωs2Δωp˜Ωc2Δωs˜),
α(ωp)=ωpnrμE0Im(E0χ1(ωp)),
jphoto=qηIsgλhc,
pc=p0PQDPPQDexp(q2PCQDkT),
CQD=2rQDEπ(1+2hQDπrQD),
jphoto=qηIsλhcM[p0PQDPPQDexp(q2PCQDkT)].
j=σQDLQD/2LQD/2LQD/2LQD/2jmaxexp(eφkT)dxdy,
A*=4π(mlhz+mhhz)k2h3.
j=JmaxΘPexp{q(V+VDPPQDVQD)(M+1)kT},
Θ=1.11{erf(0.84qLQDPσQD32εkT)}2εkTq2σQD,
VQD=2πqεM(M+1)σQDL(1δ)PQD,
VD=2πqεM(M+1)σDL,
δ=0.722πMLσQD.
α(ωp)=Ξ[γ14Δωp2](Ωc2Δωp2)2+(γ14Δωp)2,
Δωp=±Ωc,i.e.ωp=(ω4ω1)±Ωc.

Metrics